A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Potato Leaves
2.2. Experimental Hyperspectral Imagery
2.3. Data Extraction of Regions of Interest
2.4. Data Preprocessing
2.5. Feature Wavelength Selection
2.6. Model Building for Classification of Potato Leaf Diseases
2.7. Parameter Optimization of Classification Models with Real-Coded Genetic Algorithm
- Potato leaf hyperspectral data and tag data are fed into the SVM classifier.
- The parameters of the real-coded genetic algorithm are initialized, and the initial populations containing the parameters C and gamma are generated and encoded.
- The classification accuracy is calculated as the individual fitness based on the fitness function.
- It is determined whether the current population number has reached the threshold value; if it is not the maximum value, proceed to step 5; if it is the maximum value, proceed to step 8.
- Individuals are selected by the roulette method.
- Crossing between individuals is performed according to the arithmetic crossing mode, and the population is updated. The arithmetic crossing formula is as follows:
- The mutation of individual genes is performed using a single point mutation, which is calculated as follows.When is greater than 0.5,Then, steps 3 and 4 are repeated.
- The current optimal individual is decoded and output as the parameters C and gamma.
2.8. Model Evaluation
3. Results and Discussion
3.1. Spectral Analysis
3.2. Model Parameter Settings
3.3. Data Preprocessing
3.4. Feature Selection
3.4.1. Feature Wavelength Selection Based on CARS, SPA and GA
3.4.2. Feature Wavelength Selection Based on CARS-SPA-GA
3.4.3. Comparison of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forecast on the Occurrence Trend of Major Crop Pests and Diseases in Inner Mongolia Autonomous Region in 2023. Available online: https://nmt.nmg.gov.cn/yw/syjs/nyyzb/202306/t20230609_2329800.html (accessed on 9 June 2023).
- Peng, Z.; Guan, C. Green control of potato pests and diseases. Agric. Technol. 2024, 44, 82–86. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, J.; Feng, Q.; Chai, X.; Zhang, N.; Zhang, W. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases. Smart Agric. 2022, 4, 29–46. [Google Scholar]
- Ayikpa, K.J.; Gouton, P.; Mamadou, D.; Ballo, A.B. Classification of Cocoa Beans by Analyzing Spectral Measurements Using Machine Learning and Genetic Algorithm. J. Imaging 2024, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Van De Vijver, R.; Mertens, K.; Heungens, K.; Somers, B.; Nuyttens, D.; Borra-Serrano, I.; Lootens, P.; Roldán-Ruiz, I.; Vangeyte, J.; Saeys, W. In-field detection of Alternaria solani in potato crops using hyperspectral imaging. Comput. Electron. Agric. 2020, 168, 105106. [Google Scholar] [CrossRef]
- Shen, M.; Hou, H.; Zhao, H.; Zhang, K.; Zhang, Y. Research progress on early detection techniques for common diseases of Solanaceae crops. Jiangsu Agric. Sci. 2023, 51, 17–25. [Google Scholar] [CrossRef]
- Xu, M.; Li, M.; Bai, Z.; Hu, Y.; He, Y. Identification of Early Blight Disease on Potato Leaves Using Hyperspectral Imaging Technique. J. Agric. Mech. Res. 2016, 38, 205–209. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Feng, J. Convolutional Neural Network Combined with Improved Spectral Processing Method for Potato Disease Detection. Spectrosc. Spectr. Anal. 2024, 44, 215–224. [Google Scholar]
- Liu, L.; Tao, H.; Fang, J.; Zheng, W.; Wang, L.; Jin, X. Identifying Anthracnose and Black Spot of Pear Leaves on Near-infrared Hyperspectroscopy. Trans. Chin. Soc. Agric. Mach. 2022, 53, 221–230. [Google Scholar]
- Furlanetto, R.H.; Crusiol, L.G.T.; Nanni, M.R.; de Oliveira Junior, A.; Sibaldelli, R.N.R. Hyperspectral Data for Early Identification and Classification of Potassium Deficiency in Soybean Plants (Glycine max (L.) Merrill). Remote Sens. 2024, 16, 1900. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Li, H.; Feng, J. Extraction of hyperspectral diseased potato leaf characteristic wavelength by second principal component. Opt. Instrum. 2019, 41, 8–13. [Google Scholar]
- Li, Y.; Li, C.; Wang, X.; Fan, P.; Li, Y.; Zhai, C. Identification of Cucumber Disease and Insect Pest Based on Hyperspectral Imaging. Spectrosc. Spectr. Anal. 2024, 44, 301–309. [Google Scholar]
- Gold, K.M.; Townsend, P.A.; Chlus, A.; Herrmann, I.; Couture, J.J.; Larson, E.R.; Gevens, A.J. Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato. Remote Sens. 2020, 12, 286. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, L.; Gao, Q.; Song, X.; Wang, X.; Ren, G. Diagnosis of tobacco PVY severity based on leaf spectral analysis. Tob. Sci. Technol. 2021, 54, 23–28. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhou, Z.; Zhang, Y.; Wang, X. Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology. Foods 2023, 12, 535. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Chen, Q. Comparison of wavelength selected methods for improving of prediction performance of PLS model to determine aflatoxin B1 (AFB1) in wheat samples during storage. Microchem. J. 2021, 170, 106642. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Shi, Q.; Ma, Q.; Wang, W.; Sun, J. Diagnosis of Korla Pear Black Spot Disease in Incubation Period Based on Hyperspectral Imaging and Ensemble Learning Algorithm. Trans. Chin. Soc. Agric. Mach. 2022, 53, 295–303. [Google Scholar]
- Wang, L.; Pang, L.; Yan, L.; Zhang, J. Nondestructive Rapid Identification of Soybean Varieties Using Hyperspectral Imaging Technology. J. Appl. Spectrosc. 2022, 89, 84–91. [Google Scholar] [CrossRef]
- Ma, H.; Huang, W.; Dong, Y.; Liu, L.; Guo, A. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens. 2021, 13, 3024. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Yao, K.; Xu, M. Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120460. [Google Scholar] [CrossRef]
- Bai, Z.; Xie, M.; Hu, B.; Luo, D.; Wan, C.; Peng, J.; Shi, Z. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China. Sensors 2022, 22, 6124. [Google Scholar] [CrossRef]
- Ding, J.; Liang, K.; Han, D.; Xu, J.; Shen, M. Detection of Vomiting Toxin Content in Wheat Scab Seeds by Near-Infrared Hyperspectral Based on ICO-SPA Feature Extraction. J. Triticeae Crops 2019, 39, 867–876. [Google Scholar]
- Lee, S.-J.; Moon, H.-J.; Kim, D.-J.; Yoon, Y. Genetic algorithm-based feature selection for depression scale prediction. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; pp. 65–66. [Google Scholar]
- Reddy, P.; Panozzo, J.; Guthridge, K.M.; Spangenberg, G.C.; Rochfort, S.J. Single Seed Near-Infrared Hyperspectral Imaging for Classification of Perennial Ryegrass Seed. Sensors 2023, 23, 1820. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Su, C.t.; Zou, J.p.; Ou-yang, S.t.; Wu, J.; Chen, N.; de Liu, Y.; Li, B. Detection storage time of mangoes after mild bruise based on hyperspectral imaging combined with deep learning. J. Chemom. 2024, 38, e3559. [Google Scholar] [CrossRef]
- Benmouna, B.; Pourdarbani, R.; Sabzi, S.; Fernandez-Beltran, R.; García-Mateos, G.; Molina-Martínez, J.M. Comparison of Classic Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment in Tomato Leaves. Remote Sens. 2022, 14, 6366. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Fu, L. Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and fluorescence hyperspectral technology. Infrared Phys. Technol. 2021, 119, 103936. [Google Scholar] [CrossRef]
- Dong, J.; Tian, Y.; Zhang, J.; Luan, Z.; Du, Z. Research on the Classification Method of Benthic Fauna Based on Hyperspectral Data and Random Forest Algorithm. Spectrosc. Spectr. Anal. 2023, 43, 3015–3022. [Google Scholar]
- Gao, R.; Feng, L.; Zhang, Y.; Yuan, J.; Wu, R.; Gu, J. Early Detection of Tomato Gray Mold Disease with Multi-Dimensional Random Forest Based on Hyperspectral Image. Spectrosc. Spectr. Anal. 2022, 42, 3226–3234. [Google Scholar]
- Sun, C.; Jiao, L.; Yan, C.; Wang, C.; Wang, W.; Zhang, C.; Wang, Q. Identification of Salvia Miltiorrhiza Radix et Rhizoma from Different Origins by Hyperspectrum with Artificial Neural Network. Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2024, 60, 271–276. [Google Scholar]
- Ye, F.; Zhou, B. Mangrove Species Classification from Unmanned Aerial Vehicle Hyperspectral Images Using Object-Oriented Methods Based on Feature Combination and Optimization. Sensors 2024, 24, 4108. [Google Scholar] [CrossRef]
- Qin, Y.; Song, K.; Zhang, N.; Wang, M.; Zhang, M.; Peng, B. Robust NIR quantitative model using MIC-SPA variable selection and GA-ELM. Infrared Phys. Technol. 2023, 128, 104534. [Google Scholar] [CrossRef]
- Radwan, M.; Alhussan, A.A.; Ibrahim, A.; Tawfeek, S.M. Potato Leaf Disease Classification Using Optimized Machine Learning Models and Feature Selection Techniques. Potato Res. 2024. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y. An improved real-coded genetic algorithm based on DNM. J. Beijing Inf. Sci. Technol. Univ. (Sci. Technol. Ed.) 2021, 36, 46–51. [Google Scholar] [CrossRef]
- Ryckewaert, M.; Héran, D.; Trani, J.-P.; Mas-Garcia, S.; Feilhes, C.; Prezman, F.; Serrano, E.; Bendoula, R. Hyperspectral images of grapevine leaves including healthy leaves and leaves with biotic and abiotic symptoms. Sci. Data 2023, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, Y.; He, Y. Analysis of Difference between Potato and Other Staple Crops Based on Hyperspectral Curve. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 10–16, 129. [Google Scholar]
- Liu, T.; Li, Z.; Feng, S.; Wang, W.; Yuan, Q.; Xu, T. Classification Detection of Hyperspectral Rice Blast Disease Based on LMPSO-SVM. Trans. Chin. Soc. Agric. Mach. 2023, 54, 208–216, 235. [Google Scholar]
- Liang, Y.; Ma, K.; Zhang, X.; Yang, Q.; Wu, J. Identification of Types of Tobacco Leaf Diseases Using Near-Infrared Spectroscopy and Random Forest Algorithm. Laser Optoelectron. Prog. 2024, 61, 362–369. [Google Scholar]
- Mei, G.; Li, R.; Mei, X.; Chen, R.; Fan, Y.; Cheng, J.; Feng, Z.; Tao, T.; Zhao, Q.; Zhao, P.; et al. A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust. Sci. Agric. Sin. 2024, 57, 484–499. [Google Scholar]
- Wang, Y.; Zhang, A.; Gao, C. Sorting of Mixed Oryza sativa L. Seeds by Terahertz Spectrum and Feature Selection Algorithm. Seed 2024, 43, 143–149. [Google Scholar] [CrossRef]
Classifier | Method | OA% | Kappa | |
---|---|---|---|---|
Train Set | Test Set | |||
SVM | - | 97.327 | 96.078 | 94.103 |
MSC | 99.015 | 97.712 | 96.560 | |
RF | - | 95.499 | 89.542 | 84.264 |
MSC | 98.312 | 96.405 | 94.594 | |
MLP | - | 94.936 | 94.771 | 92.137 |
MSC | 97.468 | 95.751 | 93.612 |
Model | Method | Wavelength | OA% | Kappa | |
---|---|---|---|---|---|
Train Set | Test Set | ||||
RCGA-SVM | - | 276 | 99.015 | 97.712 | 96.560 |
GA | 127 | 99.015 | 98.692 | 98.034 | |
CARS | 60 | 98.171 | 97.385 | 96.068 | |
SPA | 20 | 95.499 | 95.424 | 93.117 | |
CARS-SPA-GA | 40 | 98.452 | 98.366 | 97.543 | |
RCGA-RF | - | 276 | 98.312 | 96.405 | 94.594 |
GA | 127 | 98.312 | 96.405 | 94.594 | |
CARS | 60 | 98.030 | 95.424 | 93.119 | |
SPA | 20 | 97.749 | 96.405 | 94.593 | |
CARS-SPA-GA | 40 | 98.030 | 97.058 | 95.577 | |
RCGA-MLP | - | 276 | 97.468 | 95.751 | 93.612 |
GA | 127 | 97.327 | 95.751 | 93.609 | |
CARS | 60 | 96.765 | 96.732 | 95.086 | |
SPA | 20 | 94.092 | 93.464 | 90.167 | |
CARS-SPA-GA | 40 | 97.890 | 94.771 | 92.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Fu, X.; Li, H. A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification. Sensors 2024, 24, 6566. https://doi.org/10.3390/s24206566
Li X, Fu X, Li H. A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification. Sensors. 2024; 24(20):6566. https://doi.org/10.3390/s24206566
Chicago/Turabian StyleLi, Xue, Xueliang Fu, and Honghui Li. 2024. "A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification" Sensors 24, no. 20: 6566. https://doi.org/10.3390/s24206566
APA StyleLi, X., Fu, X., & Li, H. (2024). A CARS-SPA-GA Feature Wavelength Selection Method Based on Hyperspectral Imaging with Potato Leaf Disease Classification. Sensors, 24(20), 6566. https://doi.org/10.3390/s24206566