Motion Control System for USV Target Point Convergence
Abstract
:1. Introduction
2. Overall Design of the USV
2.1. Hull Structure
2.2. Overall Design of Ship-Based System
2.3. Overall Design of Shore-Based System
3. Mathematical Modeling of USV
3.1. Establishment of Coordinate Systems
3.2. Kinematic Model
3.3. Dynamics Model
- (1)
- Since the USV is moving in the horizontal plane, ignoring the effects of surge, sway, and yaw motions, .
- (2)
- The mass of the hull is evenly distributed and symmetrical, so the values of and are both 0.
- (3)
- The origin of the body-fixed coordinate system is set at the center of gravity of the USV so that the center of gravity coordinates , , and are all 0.
- (1)
- Inertia matrix
- (2)
- Coriolis matrix
- (3)
- Hydrodynamic damping coefficient matrix
3.4. Parameter Identification of Model
4. Target Point Tracking
4.1. Establishment of the Heading Coordinate System
4.2. Design of Heading Tracking Controller
4.2.1. Principles of Automatic Heading Control
4.2.2. Design of Heading Cascade PID Controllers
4.2.3. Stability Analysis
5. Dynamic Positioning and Ship Experiment
5.1. Adaptive Adjustment Mechanism
5.1.1. Hardware Architecture
5.1.2. Principle of Adaptive Adjustment
5.2. Experiment
5.2.1. Data Analysis of Target Point Tracking Segment
5.2.2. Data Analysis of Dynamic Positioning Segment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Yan, X.; Liu, W.; Ye, H.; Du, Z.; Zhong, W. An improved stanley guidance law for large curvature path following of unmanned surface vehicle. Ocean Eng. 2022, 266, 112797. [Google Scholar] [CrossRef]
- Liang, X.; Qu, X.; Wang, N.; Li, Y. Swarm velocity guidance based distributed finite-time coordinated path-following for uncertain under-actuated autonomous surface vehicles. ISA Trans. 2021, 112, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, Y.; Liu, W.; Ye, H.; Zhong, W.; Xiang, Z. Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle. Ocean Eng. 2022, 266, 112809. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Karimi, H.R.; Lu, Y. Guidance and control methodologies for marine vehicles: A survey. Control Eng. Pract. 2021, 111, 104785. [Google Scholar] [CrossRef]
- He, Z.; Fan, Y.; Wang, G.; Mu, D.; Song, B. Global finite-time PLOS-OCCs guidance and adaptive integral sliding mode path following control for unmanned surface vehicles with ocean currents and input saturation. Ocean Eng. 2024, 299, 117227. [Google Scholar] [CrossRef]
- Mu, D.; Li, J.; Wang, G.; Fan, Y. Disturbance rejection control of adaptive integral LOS unmanned ship path following based on fast wave inversion. Appl. Ocean Res. 2024, 144, 103907. [Google Scholar] [CrossRef]
- He, Z.; Fan, Y.; Wang, G.; Mu, D. Cooperative trajectory tracking control of MUSVs with periodic relative threshold event-triggered mechanism and safe distance. Ocean Eng. 2023, 269, 113541. [Google Scholar] [CrossRef]
- Roberts, G. Trends in marine control systems. Annu. Rev. Control 2008, 32, 263–269. [Google Scholar] [CrossRef]
- Gupta, D.K.; Dei, G.; Soni, A.K.; Jha, A.V.; Appasani, B.; Bizon, N.; Srinivasulu, A.; Nsengiyumva, P. Fractional order PID controller for load frequency control in a deregulated hybrid power system using Aquila Optimization. Results Eng. 2024, 23, 102442. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Liao, Y.; Pan, K.; Zhang, W. Adaptive heading control of unmanned wave glider with heading information fusion. Control Eng. Pract. 2019, 85, 216–224. [Google Scholar] [CrossRef]
- Wu, J.F.; Liu, L.L.; Zhong, X.H. MFA controller with tracking differentiator. Electr. Mach. Control 2007, 11, 547–550. [Google Scholar]
- Bu, X.; Wang, Q.; Hou, Z.; Qian, W. Data driven control for a class of nonlinear systems with output saturation. ISA Trans. 2018, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.; Liao, Y.; Jiang, Q.; Pan, K. Heading MFA control for unmanned surface vehicle with angular velocity guidance. Appl. Ocean Res. 2018, 80, 57–65. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, Q.; Du, T.; Jiang, W. Redefined Output Model-Free Adaptive Control Method and Unmanned Surface Vehicle Heading Control. IEEE J. Ocean. Eng. 2020, 45, 714–723. [Google Scholar] [CrossRef]
- Wang, N.; Sun, Z.; Yin, J.; Zou, Z.; Su, S.F. Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns. Ocean Eng. 2019, 176, 57–64. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, Y.; Nie, Y.; Yu, H. Prescribed performance LOS guidance-based dynamic surface path following control of unmanned sailboats. Ocean Eng. 2023, 284, 115182. [Google Scholar] [CrossRef]
- Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of Drift Forces. IEEE Trans. Control Syst. Technol. 2015, 23, 820–827. [Google Scholar] [CrossRef]
- Fossen, T.I.; Grøvlen, Å. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol. 1998, 6, 121–128. [Google Scholar] [CrossRef]
- Mehrzadi, M.; Terriche, Y.; Su, C.L.; Othman, M.; Vasquez, J.C.; Guerrero, J.M. Review of Dynamic Positioning Control in Maritime Microgrid Systems. Energies 2020, 13, 3188. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, M.; Zhang, W.; Zhang, W. Event-triggered distributed adaptive cooperative control for multiple dynamic positioning ships with actuator faults. Ocean Eng. 2021, 242, 110124. [Google Scholar] [CrossRef]
- Du, J.; Hu, X.; Krstić, M.; Sun, Y. Dynamic positioning of ships with unknown parameters and disturbances. Control Eng. Pract. 2018, 76, 22–30. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; Chichester: New York, NY, USA, 1994. [Google Scholar]
Serial Number | Description | Force (N)/ Moment (N·m) | Linear Velocity (m/s)/ Angular Velocity (rad/s) | Position/ Attitude Angle (°) |
---|---|---|---|---|
1 | surge | X | u | x |
2 | sway | Y | v | y |
3 | heave | Z | w | z |
4 | roll | K | p | |
5 | pitch | M | q | |
6 | yaw | N | r |
Parameter | Value |
---|---|
Quantity m/kg | 32.5 |
Length L/m | 1.05 |
Height B/m | 0.8 |
Draught depth at full load D/m | 0.17 |
Distance from propeller to centerline /m | 0.42 |
Control Code | Control Code | Combined Force F/N | Current Velocity/(m/s) |
---|---|---|---|
100 | 100 | 10.83 | 0.044 |
150 | 150 | 16.245 | 0.091 |
200 | 200 | 21.66 | 0.267 |
250 | 250 | 27.075 | 0.344 |
300 | 300 | 32.49 | 0.492 |
350 | 350 | 37.905 | 0.562 |
400 | 400 | 43.32 | 0.623 |
450 | 450 | 48.735 | 0.742 |
Control Code | Control Code | Moment /N·m | Angular Velocity/(°/s) |
---|---|---|---|
150 | 100 | 1.135 | 2.085 |
170 | 100 | 1.589 | 3.791 |
190 | 100 | 2.043 | 5.494 |
210 | 100 | 2.497 | 7.558 |
230 | 100 | 2.951 | 10.748 |
250 | 100 | 3.405 | 13.429 |
270 | 100 | 3.859 | 15.623 |
300 | 100 | 4.54 | 19.742 |
Parameter Name | Value | Parameter Name | Value |
---|---|---|---|
2.5 | 23 | ||
0.03 | 0.11 | ||
1.1 | 8.5 | ||
1.5 | 7.5 | ||
0.01 | 0.13 | ||
0 | 0 |
Date of experiment | 20 May 2024 | Length of USV (m) | 1.05 |
The direction of the wind | southwestern | Horizontal projected area (m2) | 0.15 |
The speed of the wind (Kt) | 7.5 | Vertical projected area (m2) | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhang, H.; Liu, K.; Ma, L.; Yang, Y.; Fan, Z. Motion Control System for USV Target Point Convergence. Sensors 2024, 24, 6589. https://doi.org/10.3390/s24206589
Zhou J, Zhang H, Liu K, Ma L, Yang Y, Fan Z. Motion Control System for USV Target Point Convergence. Sensors. 2024; 24(20):6589. https://doi.org/10.3390/s24206589
Chicago/Turabian StyleZhou, Jian, Hui Zhang, Kai Liu, Linhan Ma, Yanxia Yang, and Zhanchao Fan. 2024. "Motion Control System for USV Target Point Convergence" Sensors 24, no. 20: 6589. https://doi.org/10.3390/s24206589
APA StyleZhou, J., Zhang, H., Liu, K., Ma, L., Yang, Y., & Fan, Z. (2024). Motion Control System for USV Target Point Convergence. Sensors, 24(20), 6589. https://doi.org/10.3390/s24206589