A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot
Abstract
:1. Introduction
- Step 1: Patient-specific lower-limb parameters are input into the system, leading to the creation of a personalized lower-limb motion space. This space is subsequently segmented into distinct training regions, categorized according to the classification criteria established for the space. Building upon this classification, the initial and final positions, as well as intermediate via points, are meticulously defined. These points are strategically positioned within the valid training region of the action space, aligning with the five joint rehabilitation indicator parameters that have been set by a physician based on their clinical experience.
- Step 2: Utilizing the defined key points, a parametric path is constructed via a seventh-degree polynomial curve. The coefficients of this polynomial are then fine-tuned through optimization to accurately represent the intended rehabilitation trajectory. The robot’s end effector is designed to minimize jerk, replicating a gentle and low-impact rehabilitative trajectory. This mimics the approach traditionally employed by physicians, who guide the affected limbs along such trajectories during therapy.
- Step 3: The kinematic curve of the rehabilitation trajectory is converted into joint space through inverse kinematics. The joint movements are then transmitted to the controller, which drives the lower-limb rehabilitation robot’s end effector to track the generated trajectory.
2. Multi-Posture Lower-Limb Rehabilitation Robot
2.1. Mechanism
2.2. Description of the Action Space
3. Rehabilitative Path Planning Based on Joint Rehabilitation Indicators
3.1. The Division of Training Section and the Classification of the Action Space
3.2. The Characteristics of Joint Rehabilitation Corresponding to the Rehabilitative Path
3.3. Generation of Rehabilitation Path
4. Rehabilitative Trajectory Planning-Based Jerk Minimization
4.1. Polynomial Trajectory Planning
4.2. Trajectory Optimization
4.3. Generation of Rehabilitation Trajectory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Li, K.; Yue, S.; Yin, C.; Yin, C.; Wei, N. Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: A study on the stance-to-swing phases of gait. PLoS ONE 2017, 12, e0183865. [Google Scholar] [CrossRef] [PubMed]
- Celestino, M.L.; van Emmerik, R.; Barela, J.A.; Bacca, O.; Barela, A.M.F. Effects of limited knee flexion movement in intra-limb gait coordination. J. Biomech. 2021, 128, 110712. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Stiff knee gait disorders as neuromechanical consequences of spastic hemiplegia in chronic stroke. Toxins 2023, 15, 204. [Google Scholar] [CrossRef]
- Rybar, M.M.; Walker, E.R.; Kuhnen, H.R.; Ouellette, D.R.; Berrios, R.; Hunter, S.K.; Hyngstrom, A.S. The stroke-related effects of hip flexion fatigue on over ground walking. Gait Posture 2014, 39, 1103–1108. [Google Scholar] [CrossRef]
- Carda, S.; Invernizzi, M.; Cognolato, G.; Piccoli, E.; Baricich, A.; Cisari, C. Efficacy of a hip flexion assist orthosis in adults with hemiparesis after stroke. Phys. Ther. Rehabil. J. 2012, 92, 734–739. [Google Scholar] [CrossRef]
- Hyngstrom, A.S.; Kuhnen, H.R.; Kirking, K.M.; Hunter, S.K. Functional implications of impaired control of submaximal hip flexion following stroke. Muscle Nerve 2014, 49, 225–232. [Google Scholar] [CrossRef]
- Salzmann, C.; Sehle, A.; Liepert, J. Using the flexor reflex in a chronic stroke patient for gait improvement: A case report. Front. Neurol. 2021, 12, 691214. [Google Scholar] [CrossRef]
- Nadeau, S.; Gravel, D.; Arsenault, A.B.; Bourbonnais, D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin. Biomech. 1999, 14, 125–135. [Google Scholar] [CrossRef]
- Schindler-Ivens, S.; Desimone, D.; Grubich, S.; Kelley, C.; Sanghvi, N.; Brown, D.A. Lower extremity passive range of motion in community-ambulating stroke survivors. J. Neurol. Phys. Ther. 2008, 32, 21–31. [Google Scholar] [CrossRef]
- Pollock, C.L.; Hunt, M.A.; Garland, S.J.; Ivanova, T.D.; Wakeling, J.M. Relationships between stepping-reaction movement patterns and clinical measures of balance, motor impairment, and step characteristics after stroke. Phys. Ther. Rehabil. J. 2021, 101, pzab069. [Google Scholar] [CrossRef]
- Gomez-Cuaresma, L.; Lucena-Anton, D.; Gonzalez-Medina, G.; Martin-Vega, F.J.; Galan-Mercant, A.; Luque-Moreno, C. Effectiveness of stretching in post-stroke spasticity and range of motion: Systematic review and meta-analysis. J. Pers. Med. 2021, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bouri, M.; Le Gall, B.; Clavel, R. A new concept of parallel robot for rehabilitation and fitness: The lambda. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 2503–2508. [Google Scholar] [CrossRef]
- Simon, A.M.; Kelly, B.M.; Ferris, D.P. Preliminary trial of symmetry-based resistance in individuals with post-stroke hemiparesis. In Proceedings of the 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, USA, 2–6 September 2009; pp. 5294–5299. [Google Scholar] [CrossRef]
- Ho, H.J.; Chen, T.C. Motorized CPM/CAM physiotherapy device with sliding-mode fuzzy neural network control loop. Comput. Meth. Programs Biomed. 2009, 96, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, L.; Hu, X.; Tian, L. Experiment study of fuzzy impedance control on horizontal lower limbs rehabilitation robot. In Proceedings of the International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 2640–2643. [Google Scholar]
- Deaconescu, T.; Deaconescu, A. Pneumatic muscle actuated isokinetic equipment for the rehabilitation of patients with disabilities of the bearing joints. In Proceedings of the International Multi-Conference of Engineers and Computer Scientists (IMECS), Hong Kong, 18–20 March 2009; pp. 1823–1827. [Google Scholar]
- Metrailler, P.; Blanchard, V.; Perrin, I.; Brodard, R.; Frischknecht, R.; Schmitt, C.; Fournier, J.; Bouri, M.; Clavel, R. Improvement of rehabilitation possibilities with the MotionMaker (TM). In Proceedings of the 2006 1st IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 20–22 February 2006; pp. 626–631. [Google Scholar]
- Schmitt, C.; Métrailler, P.; Al-Khodairy, A.; Brodard, R.; Fournier, J.; Bouri, M.; Clavel, R. The Motion Maker™: A rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. In Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation, Vienna, Austria, 6–9 September 2004; pp. 117–120. [Google Scholar] [CrossRef]
- Akdoan, E.; Adli, M.A. The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 2011, 21, 509–522. [Google Scholar] [CrossRef]
- Hidenori, T. Development of portable therapeutic exercise machine temlx2 influences of passive motion for lower extremities on regional cerebral blood volume. In Proceedings of the Symposium on Biological and Physiological Engineering, Taipei, Taiwan, 7–8 December 2006; pp. 29–31. [Google Scholar]
- Bradley, D.; Acosta-Marquez, C.; Hawley, M.; Brownsell, S.; Enderby, P.; Mawson, S. Nexos: The design, development and evaluation of a rehabilitation system for the lower limbs. Mechatronics 2009, 19, 247–257. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Y.; Yu, H.; Wang, Z.; Victor, V.; Du, Y. Mechanical design and trajectory planning of a lower limb rehabilitation robot with a variable workspace. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418776855. [Google Scholar] [CrossRef]
- Hwang, S.H.; Sun, D.I.; Han, J.; Kim, W.S. Gait pattern generation algorithm for lower-extremity rehabilitation–exoskeleton robot considering wearer’s condition. Intell. Serv. Robot. 2021, 14, 345–355. [Google Scholar] [CrossRef]
- Long, Y.; Du, Z.J.; Wang, W.D.; Dong, W. Human motion intent learning based motion assistance control for a wearable exoskeleton. Robot. Comput.-Integr. Manuf. 2018, 49, 317–327. [Google Scholar] [CrossRef]
- Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Wearable gait measurement system with an instrumented cane for exoskeleton control. Sensors 2014, 14, 1705–1722. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Mizukami, M.; Kawamoto, H.; Sano, A.; Koseki, K.; Sano, K.; Asakawa, Y.; Kohno, Y.; Nakai, K.; Gosho, M.; et al. Gait training with hybrid assistive limb enhances the gait functions in subacute stroke patients: A pilot study. NeuroRehabilitation 2017, 40, 87–97. [Google Scholar] [CrossRef]
- Mileti, I.; Taborri, J.; Torricelli, D.; Rossi, S.; Patane, F. Artificial neural network for the identification of postural instability in subject wearing lower limb exoskeleton. In Proceedings of the IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (IEEE MetroXRAINE), Rome, Italy, 26–28 October 2022; pp. 651–655. [Google Scholar] [CrossRef]
- Gil-Agudo, A.; Del Ama-Espinosa, A.J.; Lozano-Berrio, V.; Fernández-López, A.; Megía, G.-C.A.; Benito-Penalva, J.; Pons, J.L. Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience. Rehabilitacion 2020, 54, 54–87. [Google Scholar] [CrossRef]
- Patton, J.; Brown, D.A.; Peshkin, M.; Santos-Munné, J.J.; Makhlin, A.; Lewis, E.; Colgate, E.J.; Schwandt, D. KineAssist: Design and development of a robotic overground gait and balance therapy device. Top. Stroke Rehabil. 2008, 15, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Riener, R.; Lünenburger, L.; Jezernik, S.; Anderschitz, M.; Colombo, G.; Dietz, V. Patient-cooperative strategies for robot-aided treadmill training: First experimental results. J. NeuroEng. Rehabil. 2005, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Duschau-Wicke, A.; von Zitzewitz, J.; Caprez, A.; Lunenburger, L.; Riener, R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 38–48. [Google Scholar] [CrossRef] [PubMed]
- van Kammen, K.; Boonstra, A.M.; van der Woude, L.H.V.; Reinders-Messelink, H.A.; den Otter, R. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin. Biomech. 2016, 36, 65–73. [Google Scholar] [CrossRef]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.G.; Ekkelenkamp, R.; Van Asseldonk, E.H.F.; van der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef]
- Banala, S.K.; Agrawal, S.K.; Scholz, J.P. Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. In Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; p. 401. [Google Scholar] [CrossRef]
- Guo, B.; Han, J.; Li, X.; Wu, P.; Zhang, Y.; You, A. A wearable somatosensory teaching device with adjustable operating force for gait rehabilitation training robot. Adv. Mech. Eng. 2017, 9, 6293. [Google Scholar] [CrossRef]
- Guo, B.; Han, J.; Li, X.; Fang, T.; You, A. Research and design of a new horizontal lower limb rehabilitation training robot. Int. J. Adv. Robot. Syst. 2016, 13, 62032. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, H.; Niu, J.; Lu, Z.; Liu, C.; Feng, N. Jump motion intention recognition and brain activity analysis based on EEG signals and Vision Transformer model. Biomed. Signal Process. Control 2025, 100, 107001. [Google Scholar] [CrossRef]
- Mercorelli, P. Using Fuzzy PD Controllers for Soft Motions in a Car-like Robot. Adv. Sci. Technol.-Res. 2018, 3, 380–390. [Google Scholar] [CrossRef]
- Kruse, O.; Mukhamejanova, A.; Mercorelli, P. Super-Twisting Sliding Mode Control for Differential Steering Systems in Vehicular Yaw Tracking Motion. Electronics 2022, 11, 1330. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhang, B.; Zheng, D.; Yu, H.; Cheng, B.; Niu, J. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning. Sensors 2024, 24, 2310. [Google Scholar] [CrossRef]
- Wu, G.L.; Zhang, S.D. Real-time jerk-minimization trajectory planning of robotic arm based on polynomial curve optimization. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2022, 236, 10852–10864. [Google Scholar] [CrossRef]
Joint/Posture | Lying | Sitting | Standing |
---|---|---|---|
Hip | 0°~130° | 0°~80° | −20°~60° |
Knee | −135°~0° | −135°~0° | −135°~0° |
Ankle | −45°~30° | −45°~30° | −45°~30° |
Type | Section Numbers | Combination of Figure 6, Figure 7 and Figure 8 | Demarcation Point and Arc Pair (from Bottom to Top) | Discriminant Condition (yP14 − yP23 = l1∙sinαmax − l1∙sinαmin+ l2∙sin(αmax + βmin) − l2∙sin(αmin + βmax)) | |
---|---|---|---|---|---|
1 | 3 | Figure 6a, Figure 7a and Figure 8a Figure 6c, Figure 7d and Figure 8d | P34-P23-P14-P12 C4C3-C4C2-C1C2 | yP14 − yP23 > 0 | (a). αmin = 50°; 50° < αmax ≤ 90°; (c). αmin = 0°; −90° ≤ βmin < 0°; Condition (a) and (b) are in lying position. Condition (c) is in sitting position. |
2 | 3 | Figure 6a, Figure 7b and Figure 8a Figure 6c, Figure 7e and Figure 8d | P34-P14-P23-P12 C4C3-C1C3-C1C2 | yP14 − yP23 < 0 | |
3 | 2 | Figure 6a, Figure 7c and Figure 8a Figure 6c, Figure 7f and Figure 8d | P34-P14(P23)-P12 C4C3-C1C2 | yP14 − yP23 = 0 | |
4 | 4 | Figure 6a, Figure 7a and Figure 8b | P34-P23-P14-P12-Q2 C4C3-C4C2-C1C2-C2C2 | yP14 − yP23 > 0 | (d). αmin = 50°; 50° < αmax ≤ 90°; −αmax − 85° ≤ βmax ≤ −αmax + 90°; ; Condition (d) is in lying position. |
5 | 4 | Figure 6a, Figure 7b and Figure 8b | P34-P14-P23-P12-Q2 C4C3-C1C3-C1C2-C2C2 | yP14 − yP23 < 0 | |
6 | 3 | Figure 6a, Figure 7c and Figure 8b | P34-P14(P23)-P12-Q2 C4C3-C1C2-C2C2 | yP14 − yP23 = 0 | |
7 | 4 | Figure 6a, Figure 7a and Figure 8c | P34-P23-P14-Q1-Q2 C4C3-C4C2-C1C2-C2C2 | yP14 − yP23 > 0 | (e). αmin = 50°; 90° < αmax ≤ 130°; −αmax − 85° ≤ βmax ≤ −αmax + 90°; ; Condition (e) is in lying position. |
8 | 4 | Figure 6a, Figure 7b and Figure 8c | P34-P14-P23-Q1-Q2 C4C3-C1C3-C1C2-C2C2 | yP14 − yP23 < 0 | |
9 | 3 | Figure 6a, Figure 7c and Figure 8c | P34-P14(P23)-Q1-Q2 C4C3-C1C2-C2C2 | yP14 − yP23 = 0 | |
10 | 4 | Figure 6b, Figure 7d and Figure 8d | Q3-P34-P23-P14-P12 C3C3-C4C3-C4C2-C1C2 | yP14 − yP23 > 0 | (f). αmin = 0°; −135° ≤ βmin < −90°; Condition (f) is in sitting position. |
11 | 4 | Figure 6b, Figure 7e and Figure 8d | Q3-P34-P14-P23-P12 C3C3-C4C3-C1C3-C1C2 | yP14 − yP23 < 0 | |
12 | 3 | Figure 6b, Figure 7f and Figure 8d | Q3-P34-P14(P23)-P12 C3C3-C4C3-C1C2 | yP14 − yP23 = 0 |
Type 1~12 | Primary Indicators of Joint Rehabilitation | Auxiliary Indicators of Joint Rehabilitation | ||
---|---|---|---|---|
Relationship of P14 and P23 | Change Rules as Position Rises | Position of Section 0 | Change Rules as Position Rises | |
section 0 | / | / | / | / |
section 1 | All is permissible | βLmin = βmin | At top or not exist | Hip flexion frequency increases. |
At bottom | αLmax, αLmin and βLmax increase. | |||
section 2 | yP14 > yP23 | βLmax = βmax; βLmin = βmin | All is permissible | αLmax and αLmin increase. |
yP14 < yP23 | αLmax = αmax; αLmin = αmin | βLmax and βLmin increase. | ||
yP14 = yP23 | αLmax = αmax; αLmin = αmin; βLmax = βmax; βLmin = βmin | Not exist | ||
section 3 | All is permissible | αLmax = αmax | At top or not exist | αLmin, βLmax and βLmin increase. |
At bottom | Knee flexion frequency increases. |
No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Segs | ti (s) | |
---|---|---|
1 | 0.70 | |
1.35 | ||
2 | 0.50 | |
1.15 | ||
3 | 0.60 | |
1.10 | ||
4 | 0.60 | |
1.20 | ||
5 | 0.60 | |
1.10 | ||
6 | 0.50 | |
1.15 | ||
7 | 0.70 | |
1.35 | ||
8 | 0.70 | |
1.35 | ||
9 | 0.50 | |
1.15 | ||
10 | 0.60 | |
1.10 | ||
11 | 0.60 | |
1.20 | ||
12 | 0.60 | |
1.10 | ||
13 | 0.50 | |
1.15 | ||
14 | 0.70 | |
1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lin, M.; Sang, L.; Wang, H.; Feng, Y.; Niu, J.; Yu, H.; Cheng, B. A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot. Sensors 2024, 24, 7506. https://doi.org/10.3390/s24237506
Wang X, Lin M, Sang L, Wang H, Feng Y, Niu J, Yu H, Cheng B. A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot. Sensors. 2024; 24(23):7506. https://doi.org/10.3390/s24237506
Chicago/Turabian StyleWang, Xincheng, Musong Lin, Lingfeng Sang, Hongbo Wang, Yongfei Feng, Jianye Niu, Hongfei Yu, and Bo Cheng. 2024. "A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot" Sensors 24, no. 23: 7506. https://doi.org/10.3390/s24237506
APA StyleWang, X., Lin, M., Sang, L., Wang, H., Feng, Y., Niu, J., Yu, H., & Cheng, B. (2024). A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot. Sensors, 24(23), 7506. https://doi.org/10.3390/s24237506