Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems
Abstract
:1. Introduction
2. Design Methodology
2.1. Antenna Geometry
2.2. Simulation Environment and Measurement Setup
2.3. Steps in Design Evolution
3. Results and Discussion
3.1. Comparative Analysis of Main Parameters
3.2. Circular Polarization Analysis
- (1)
- The 3 dB AR
- (2)
- Current Distribution
- (3)
- Radiation Pattern
3.3. Link Budget for Wireless Communications
3.4. Channel Parameters
- (1)
- Envelope Correlation Coefficient (ECC): The ECC is a crucial metric that indicates the diversity and coupling performance of a multiple-antenna configuration in a MIMO system. It is used to verify the system’s independence regarding separation performance. In the ideal case, the value of ECC is 0, and the channel of MIMO does not want to be turned off at all, but in practical applications, ECC < 0.5 is usually considered acceptable. ECC can be calculated using either S-parameters or far-field radiated directional maps, and the S-parameter method of Equation (8) was used for ECC calculations in this work [29]:
- (2)
- Diversity Gain (DG): Moreover, the DG reflects how the diversity scheme influences the transmission power. A DG value of 10 dB is considered optimal, indicating a perfectly uncorrelated channel. The DG for a MIMO antenna can be calculated as follows [30]:
- (3)
- Channel Capacity (CC): The primary goal of MIMO antenna systems is to enhance capacity without requiring extra spectral or power resources. The bit error rate (BER) of the antenna system increases as the number of both transmitting and receiving antennas rises, provided that the channels are uncorrelated. However, in practical applications, achieving completely uncorrelated channels is not feasible. The CC is affected by both the number of antennas and the degree of channel correlation. Achieving high CC requires an increased number of antennas and high isolation. The CC for an N × N MIMO antenna system can be described by the following formula [31]:
3.5. Specific Absorption Rate of Energy Deposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basir, A.; Yoo, H. A stable impedance-matched ultrawideband antenna system mitigating detuning effects for multiple biotelemetric applications. IEEE Trans. Antennas Propag. 2019, 67, 3416–3421. [Google Scholar] [CrossRef]
- Biswas, B.; Karmakar, A.; Chandra, Y. Miniaturised wide band ingestible antenna for wireless capsule endoscopy. IET Microw. Antennas Propag. 2020, 14, 293–301. [Google Scholar] [CrossRef]
- Das, R.; Moradi, F.; Heidari, H. Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 343–358. [Google Scholar] [CrossRef]
- Bao, Z.; Guo, Y.X.; Mittra, R. Single-layer dual-/tri-band inverted-F antennas for conformal capsule type of applications. IEEE Trans. Antennas Propag. 2017, 65, 7257–7265. [Google Scholar] [CrossRef]
- Song, Z.; Xu, X.; Shi, Y.; Wang, L. Design of a Compact Circularly Polarized Implantable Antenna for Capsule Endoscopy Systems. Sensors 2024, 24, 3960. [Google Scholar] [CrossRef]
- Basir, A.; Zada, M.; Cho, Y.; Yoo, H. A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization. IEEE Trans. Antennas Propag. 2020, 68, 6953–6963. [Google Scholar] [CrossRef]
- Xu, L.J.; Chu, Z.J.; Zhu, L.; Xu, J.P.; Duan, Z. Design and analysis of dual-band implantable antennas based on effective relative permittivity calculation. IEEE Trans. Antennas Propag. 2020, 69, 2463–2472. [Google Scholar] [CrossRef]
- Kamel, Y.A.; Mohamed, H.A.; ELsadek, H.; ELhennawy, H.M. Miniaturized Triple-Band Circular-Polarized Implantable Patch Antenna for Bio-Telemetry Applications. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 74–78. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Yoo, H. Radiative Near-Field Wireless Power Transfer to Scalp-Implantable Biotelemetric Device. IEEE Trans. Microw. Theory Techn. 2020, 68, 2944–2953. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Zhang, W.; Guan, X.; Cai, Y.; Wu, W.; Zhang, R. Channel estimation for movable-antenna MIMO systems via tensor decomposition. IEEE Wirel. Commun. Lett. 2024, 13, 3089–3093. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, X.; Lou, Y.; Yan, F.G.; Zhou, Z.; Wu, W.; Yuen, C. Channel training-aided target sensing for terahertz integrated sensing and massive MIMO communications. IEEE Internet Things J. 2024, 1. [Google Scholar] [CrossRef]
- Wang, B.; Gao, F.; Jin, S.; Lin, H.; Li, G.Y.; Sun, S. Spatial-wideband effect in massive MIMO with application in mmWave systems. IEEE Commun. Mag. 2018, 56, 134–141. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Gao, F.; Li, G.Y. Power leakage elimination for wideband mmWave massive MIMO-OFDM systems: An energy-focusing window approach. IEEE Trans. Signal Process. 2019, 67, 5479–5493. [Google Scholar] [CrossRef]
- Zada, M.; Yoo, H. Miniaturized dual band antennas for intra-oraltongue drive system in the ISM bands 433 MHz and 915 MHz: Design safety, and link budget considerations. IEEE Trans. Antennas Propag. 2019, 67, 5843–5852. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Nedil, M. A compact implantable MIMO antenna for high-data-rate biotelemetry applications. IEEE Trans. Antennas Propag. 2022, 70, 631–640. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, C.; Li, Y.; Yang, X.M.; Liu, X. Small-size dual-antenna implantable system for biotelemetry devices. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1723–1726. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Nedil, M. Scalp-implantable MIMO antenna for high-data-rate head implants. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2529–2533. [Google Scholar] [CrossRef]
- Alazemi, A.J.; Iqbal, A. A high data rate implantable MlMO antenna for deep implanted biomedical devices. IEEE Trans. Antennas Propag. 2022, 70, 998–1007. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Cui, W.; Zhang, K.; Wang, M.; Fan, C.; Zheng, H.; Li, E. Investigation of conformal MIMO antenna for implantable devices based on theory of characteristic modes. IEEE Trans. Antennas Propag. 2022, 70, 11324–11334. [Google Scholar] [CrossRef]
- Kaim, V.; Kanaujia, B.K.; Rambabu, K. Quadrilateral spatial diversity circularly polarized MIMO cubic implantable antenna system for biotelemetry. IEEE Trans. Antennas Propag. 2021, 69, 1260–1272. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Denidni, T.A. Capsule endoscopic MIMO antenna with radiation pattern and polarization diversity. IEEE Trans. Antennas Propag. 2023, 71, 3146–3154. [Google Scholar] [CrossRef]
- Faisal, F.; Zada, M.; Yoo, H.; Mabrouk, I.B.; Chaker, M.; Djerafi, T. An Ultra-Miniaturized Antenna with Ultra-Wide Bandwidth for Future Cardiac Leadless Pacemaker. IEEE Trans. Antennas Propag. 2022, 70, 5923–5928. [Google Scholar] [CrossRef]
- Ali, U.; Khan, M.W.A.; Pournoori, N.; Ukkonen, L.; Sydänheimo, L.; Björninen, T. Quad-Band Meandered Implantable Planar Inverted-F Antenna for Wireless Brain Health Monitoring. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024. [Google Scholar]
- Daru, R.R.; Rabby, M.M.; Ko, T.; Shinglot, Y.; Raihan, R.; Adnan, A. Electrically Equivalent Head Tissue Materials for Electroencephalogram Study on Head Surrogates. Appl. Sci. 2024, 14, 2495. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Yoo, H. Scalp-implantable antenna systemsfor intracranial pressure monitoring. IEEE Trans. Antennas Propag. 2018, 66, 2170–2173. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Shah, I.A.; Hayat, S.; Yoo, H. Ultra-Miniaturized Implantable Antenna Enabling Multiband Operation for Diverse Industrial IoMT Devices. IEEE Trans. Antennas Propag. 2024, 72, 1352–1362. [Google Scholar] [CrossRef]
- Lamkaddem, A.; El Yousfi, A.; Abdalmalak, K.A.; Posadas, V.G.; Segovia-Vargas, D. Circularly polarized miniaturized implantable antenna for leadless pacemaker devices. IEEE Trans. Antennas Propag. 2022, 70, 6423–6432. [Google Scholar] [CrossRef]
- Liu, K.; Liu, R.; Cui, W.; Zhang, K.; Wang, M.; Fan, C.; Zheng, H.; Li, E. Design of conformal spiral dual-band antenna for wireless capsule system. IEEE Access 2021, 9, 117349–117357. [Google Scholar] [CrossRef]
- Ren, J.; Hu, W.; Yin, Y.; Fan, R. Compact printed MIMO antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1517–1520. [Google Scholar]
- Iqbal, A.; Basir, A.; Smida, A.; Fan, R. Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications. IEEE Access 2019, 7, 111135–111144. [Google Scholar] [CrossRef]
- Gesbert, D.; Shafi, M.; Shiu, D.; Smith, P.J.; Naguib, A. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas Commun. 2003, 21, 281–302. [Google Scholar] [CrossRef]
- Li, Z.; Du, Z.; Takahashi, M.; Saito, K.; Ito, K. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 2012, 60, 473–481. [Google Scholar] [CrossRef]
- C95.3-2002; Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz–300 GHz. (Revision of IEEE Std C95.3-1991). IEEE: New York, NY, USA, 2002; pp. 1–126.
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Denidni, T.A. Self-Quadruplexing Antenna for Scalp-Implantable Devices. IEEE Trans. Antennas Propag. 2024, 72, 2252–2260. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, J.; Chang, T.; Liu, X. A miniaturized four-element MIMO antenna with EBG for implantable medical devices. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 226–233. [Google Scholar] [CrossRef]
- Moirangthem, S.S.; Ghosh, J.; Ghosh, S.; Sarkhel, A. Minia-turized dual-antenna system for implantable biotelemetry application. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1394–1398. [Google Scholar]
Tissue | Thickness (mm) | 2450 MHz | |
---|---|---|---|
εr | σ | ||
Skin | 4 | 38 | 1.5 |
Fat | 2 | 5.3 | 0.1 |
Muscle | 4 | 52.7 | 1.7 |
Skull | 5.5 | 18 | 0.81 |
Dura | 0.5 | 42 | 1.7 |
CSF | 5 | 66.2 | 3.5 |
Brain | 30 | 48.9 | 1.81 |
Specification | Variable | Value |
---|---|---|
Transmitting antenna polarization | Circular | |
Receiving antenna polarization | Circular | |
Frequency (MHz) | f | 2450 |
Implantable antenna gain (dBi) | Gt | −24.1 |
Transmitted power(dBm) | Pt | −16 |
Impedance mismatch losses at transmitting side (dB) | Lt | 0 |
Distance (m) | d | 0–20 |
Ambient temperature (K) | T0 | 293 |
Rx noise figure | NF | 3.5 |
System noise temperature(K) | Ti | 732.5 |
Rx gain | Gr | 2.15 |
Boltzmann constant | K | 1.38 × 10−23 |
Noise power density (dB/Hz) | N0 | −199.95 |
Data rate (Kbps) | Br | Various |
Ideal PSK (dB) | Eb/N0 | 9.6 |
Coding gain (dB) | Gc | 0 |
Fixing deterioration (dB) | Gd | 2.5 |
Parameters | [11] | [16] | [17] | [18] | [35] | [36] | This Work |
---|---|---|---|---|---|---|---|
Size (mm3) | 13.04 | 360 | 3375 | 9.01 | 434.6 | 280 | 28.448 |
Frequency (GHz) | 0.433 | 2.45 | 2.45, 5.8 | 0.915 | 2.45 | 2.4 | 2.45 |
Tissue | Skin | Five-layer head model | Skin–fat–muscle | Human body | Skin–fat–muscle | Skin–fat–muscle | Seven-layer head model |
Isolation (dB) | 26 | 26.3 | 37/32 | 29.7 | 15.9 | 37 | 27.5 |
ECC | 0.1 | 0.1 | 0.1 | 0.1 | 0.0025 | - | 0.1 |
FBW (%) | 33.9 | 0.151 | 36/26 | 10.5 | 18.64 | 8.5 | 28.16 |
Polarization | LP | LP | CP | CP | LP | LP | CP |
ARBW (%) | - | - | 36/8.33 | 10.35 | - | - | 16.3 |
Polarization diversity | - | - | No | Yes | - | - | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Shi, Y.; Zheng, X.; Wang, Y. Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems. Sensors 2024, 24, 7522. https://doi.org/10.3390/s24237522
Song Z, Shi Y, Zheng X, Wang Y. Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems. Sensors. 2024; 24(23):7522. https://doi.org/10.3390/s24237522
Chicago/Turabian StyleSong, Zhiwei, Youwei Shi, Xianren Zheng, and Yuchao Wang. 2024. "Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems" Sensors 24, no. 23: 7522. https://doi.org/10.3390/s24237522
APA StyleSong, Z., Shi, Y., Zheng, X., & Wang, Y. (2024). Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems. Sensors, 24(23), 7522. https://doi.org/10.3390/s24237522