Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano
Abstract
:1. Introduction
2. Background and Related Work
2.1. Artificial Intelligence and Its Subfields
2.2. Embedded Device
2.3. Convolutional Neural Networks
3. Image Data Preparation
4. Research Methodology
5. Results and Analysis
5.1. Comparison Between Fine-Tuning and Fixed Feature Extraction Networks
5.2. Training with Different Datasets
5.2.1. Original Dataset
5.2.2. Salt and Pepper and Motion Blur Datasets
5.2.3. Combination Dataset
5.3. Performance on Jetson Nano Crack Detector
6. Discussion and Comparison
6.1. Discussion
6.2. Comparison with Alternative Studies
7. Conclusions
- Transfer learning with the fine-tuning method and specific hyperparameters is more reliable and efficient rather than the fixed feature extraction method.
- In the Orig dataset, the Resnet50 network with a batch size of 16 showed the highest accuracy and F1-score. Other CNNs, especially MobileNet V3 Small, had a weaker performance than Resnet50.
- When considering augmentation with the SP and MB datasets, Resnet50 showed its strength and reliability. The validation accuracy of the Resnet50 model for both datasets was around 82%.
- Resnet18 returned the highest validation accuracy, whereas the highest F1-score belonged to Resnet50 when dealing with the most complicated dataset (Comb) and augmentation. It can be seen that the time saved was not significant between the large and small networks, very likely due to the complexity of the dataset.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AS4349.1; 1995 Inspection of Buildings Part 1: Property Inspections—Residential Buildings. Standards Australia: Sydney, Australia, 1995.
- El Masri, Y.; Rakha, T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections. Constr. Build. Mater. 2020, 265, 120542. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.-H. Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Marin, B.; Brown, K.; Erden, M.S. Automated Masonry crack detection with Faster R-CNN. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 333–340. [Google Scholar]
- Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.Y.; Li, S.; Nguyen, A.; Málaga-Chuquitaype, C.; Gardoni, P.; Mirjalili, S. A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives. Arch. Comput. Methods Eng. 2021, 29, 2209–2235. [Google Scholar] [CrossRef]
- Chan, T.H.T.; Guan, H.; Li, J. Recent Advances in Structural Health Monitoring Research in Australia; Nova Science Publishers Inc.: New York, NY, USA, 2022. [Google Scholar]
- Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy. Meas. J. Int. Meas. Confed. 2021, 178, 109377. [Google Scholar] [CrossRef]
- Tan, X.; Chen, W.; Tan, X.; Zou, T.; Du, B. Prediction for the future mechanical behavior of underwater shield tunnel fusing deep learning algorithm on SHM data. Tunn. Undergr. Space Technol. 2022, 125, 104504. [Google Scholar] [CrossRef]
- Ceylan, H.; Gopalakrishnan, K.; Kim, S.; Taylor, P.C.; Prokudin, M.; Buss, A.F. Highway infrastructure health monitoring using micro-electromechanical sensors and systems (MEMS). J. Civ. Eng. Manag. 2013, 19, S188–S201. [Google Scholar] [CrossRef]
- Yang, S. Health Monitoring of Pavement Systems Using Smart Sensing Technologies; Iowa State University: Ames, IA, USA, 2014. [Google Scholar]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens. Actuators A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Sakiyama, F.I.H.; Lehmann, F.; Garrecht, H. Structural health monitoring of concrete structures using fibre-optic-based sensors: A review. Mag. Concr. Res. 2021, 73, 174–194. [Google Scholar] [CrossRef]
- Modares, M.; Waksmanski, N. Overview of structural health monitoring for steel bridges. Pract. Period. Struct. Des. Constr. 2013, 18, 187–191. [Google Scholar] [CrossRef]
- Bao, C.; Hao, H.; Li, Z. Vibration-based structural health monitoring of offshore pipelines: Numerical and experimental study. Struct. Control Health Monit. 2013, 20, 769–788. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Shahzad, D.; Heravi, A.; Qayyum, S.; Akram, J. Civil Infrastructure Damage and Corrosion Detection: An Application of Machine Learning. Buildings 2022, 12, 156. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Ye, X.; Jin, T.; Yun, C. A review on deep learning-based structural health monitoring of civil infrastructures. Smart Struct. Syst. 2019, 24, 567–585. [Google Scholar]
- Dais, D.; Bal, İ.E.; Smyrou, E.; Sarhosis, V. Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 2021, 125, 103606. [Google Scholar] [CrossRef]
- Sohaib, M.; Hasan, M.J.; Chen, J.; Zheng, Z. Generalizing infrastructure inspection: Step transfer learning aided extreme learning machine for automated crack detection in concrete structures. Meas. Sci. Technol. 2024, 35, 055402. [Google Scholar] [CrossRef]
- Bhatt, S.; Lo’ai, A.T.; Chhetri, P.; Bhatt, P. Authorizations in cloud-based internet of things: Current trends and use cases. In Proceedings of the 2019 4th International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 241–246. [Google Scholar]
- Zhang, R.; Zhou, X.; Tonguz, O.K. Using AI for mitigating the impact of network delay in cloud-based intelligent traffic signal control. arXiv 2020, arXiv:2002.08303. [Google Scholar]
- Munirathinam, S. Industry 4.0: Industrial internet of things (IIOT). In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117, pp. 129–164. [Google Scholar]
- Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed on 30 October 2024).
- Pizzorno, J.A. Teaching New Tricks to an Old Camera, Part II. Available online: https://towardsdatascience.com/teaching-new-tricks-to-an-old-camera-part-ii-b2143374ea43 (accessed on 30 October 2024).
- Weng, S.; Han, K.; Chu, Z.; Zhu, G.; Liu, C.; Zhu, Z.; Zhang, Z.; Zheng, L.; Huang, L. Reflectance images of effective wavelengths from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention convolution neural network. Comput. Electron. Agric. 2021, 190, 106483. [Google Scholar] [CrossRef]
- Wei, G.; Li, G.; Zhao, J.; He, A. Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 2019, 19, 217. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 10–17 June 2015; pp. 1–9. [Google Scholar]
- Zhong, Z.; Jin, L.; Xie, Z. High performance offline handwritten chinese character recognition using googlenet and directional feature maps. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 846–850. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Nguyen, A.; Chianese, R.R.; Gharehbaghi, V.R.; Perera, R.; Low, T.; Aravinthan, T.; Yu, Y.; Samali, B.; Guan, H.; Khuc, T. Robustness of Deep Transfer Learning-Based Crack Detection against Uncertainty in Hyperparameter Tuning and Input Data. 2022. Available online: https://research-repository.griffith.edu.au/items/99f04191-af31-461b-97d2-b46d1e0fd6f0 (accessed on 30 October 2024).
- Nguyen, A.; Chianese, R.R.; Gharehbaghi, V.R. 3000 ImageData for Crack Detection. 2021. Available online: https://www.kaggle.com/datasets/nguyen49/3000-imagedata-for-crack-detection (accessed on 30 October 2024).
- Andrew, G.H.; Menglong, Z.; Bo, C.; Dmitry, K.; Weijun, W.; Tobias, W.; Marco, A.; Hartwig, A. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Pennada, S.; Perry, M.; McAlorum, J.; Dow, H.; Dobie, G. Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing Crack Detection in Concrete Structures. J. Imaging 2023, 9, 218. [Google Scholar] [CrossRef]
Objective | Computer Vision Technique |
---|---|
Determining the class(es) of object(s) in an image | Image Classification |
Placing a bounding box around each detected object in an image | Object Detection |
Determining the exact pixel boundaries of each detected object in an image | Semantic Segmentation |
Network | No. of Layers | Parameters (Millions) | Size of Model (MB) | Image Size (Pixels) |
---|---|---|---|---|
Resnet18 | 18 | 1.6 | 44.8 | 224 × 224 |
Resnet50 | 50 | 25.6 | 94.4 | 224 × 224 |
GoogLeNet | 22 | 7 | 26.7 | 224 × 224 |
MobileNetV2 | 53 | 3.5 | 9.1 | 224 × 224 |
MobileNetV3 Small | 16 | 2.9 | 6.2 | 224 × 224 |
MobileNetV3 Large | 20 | 5.4 | 17 | 224 × 224 |
Parameter | Value |
---|---|
Initial learning rate | 1 × 10−4 |
L2 regularisation | 0.005 |
Momentum | 0.9 |
Optimisation algorithm | SGDM |
Epochs | 100 |
Learning rate scheduler step | 5 |
Gamma for learning rate scheduler | 0.001 |
Transfer Learning Type | CNN | Batch Size | Accuracy | Precision | Recall | F1-Score | Time (Min) |
---|---|---|---|---|---|---|---|
Fine-Tuning | Resnet18 | 16 | 0.8517 | 0.98 | 0.60 | 0.75 | 12.7 |
32 | 0.8467 | 0.96 | 0.59 | 0.73 | 12.7 | ||
Resnet50 | 16 | 0.8628 | 0.99 | 0.63 | 0.77 | 17.2 | |
32 | 0.8576 | 0.99 | 0.61 | 0.75 | 17.2 | ||
Fixed Feature Extraction | Resnet18 | 16 | 0.7849 | 0.84 | 0.48 | 0.61 | 12.5 |
32 | 0.7849 | 0.86 | 0.44 | 0.58 | 12.7 | ||
Resnet50 | 16 | 0.7878 | 0.88 | 0.45 | 0.59 | 12.7 | |
32 | 0.7878 | 0.90 | 0.43 | 0.58 | 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, C.L.; Nguyen, A.; Brown, J.; Byrne, T.; Ngo, B.T.; Luong, C.X. Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano. Sensors 2024, 24, 7818. https://doi.org/10.3390/s24237818
Nguyen CL, Nguyen A, Brown J, Byrne T, Ngo BT, Luong CX. Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano. Sensors. 2024; 24(23):7818. https://doi.org/10.3390/s24237818
Chicago/Turabian StyleNguyen, C. Long, Andy Nguyen, Jason Brown, Terry Byrne, Binh Thanh Ngo, and Chieu Xuan Luong. 2024. "Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano" Sensors 24, no. 23: 7818. https://doi.org/10.3390/s24237818
APA StyleNguyen, C. L., Nguyen, A., Brown, J., Byrne, T., Ngo, B. T., & Luong, C. X. (2024). Optimising Concrete Crack Detection: A Study of Transfer Learning with Application on Nvidia Jetson Nano. Sensors, 24(23), 7818. https://doi.org/10.3390/s24237818