Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
- An MCap system composed of eight infrared cameras (SMART DX 100, BTS-Bioengineering, Milan, Italy) with an accuracy of <0.2 mm over a 2 × 2 × 2 m volume and a sampling frequency of 100 Hz.
- Two FPs (AMTI, USA Inc., Watertown, MA, USA) measuring 464 × 508 × 82.5 mm with an accuracy of ±0.1% of the applied load and a sampling frequency of 200 Hz.
- An IMU (XSens DOT, Xsens Technologies B.V, Enschede, the Netherlands) with Bluetooth Low Energy (BLE) wireless connectivity and 60 Hz sampling frequency. It provides triaxial accelerations ([m/s2], ±16 g full scale), triaxial angular velocities ([°/s], ±2000 °/s full scale), and magnetic field measurements within the sensor’s fixed frame.
2.3. Procedure
2.4. Data Processing
- The FT method is based on the identification of TO and LA events from . TO is defined as the instant when crosses the zero-acceleration threshold, while LA is identified as the last observation of less than 0. is then obtained as in (6) [37]:
- The TOV considers the subject as only affected by gravity during the jump and neglects the air resistance. is calculated from (7), where TOV is the takeoff velocity determined by the integration of measured before the TO instant, as defined in the FT method [20]:
2.5. Statistical Analysis
3. Results
3.1. Agreement Between Gold Standard Systems
3.2. Agreement Between VJHGSV and IMU Calculation Methods
3.3. Test–Retest Reliability
4. Discussion
Limitations and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebermann, D.G.; Katz, L. On the Assessment of Lower-Limb Muscular Power Capability. Isokinet. Exerc. Sci. 2003, 11, 87–94. [Google Scholar] [CrossRef]
- Karatrantou, K.; Gerodimos, V.; Voutselas, V.; Manouras, N.; Famisis, K.; Ioakimidis, P. Can Sport-Specific Training Affect Vertical Jumping Ability during Puberty? Biol. Sport 2019, 36, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Manske, R.; Reiman, M. Functional Performance Testing for Power and Return to Sports. Sports Health 2013, 5, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Anicic, Z.; Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Petrovic, M.R.; Cabarkapa, D.; Mirkov, D.M. Assessment of Countermovement Jump: What Should We Report? Life 2023, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.-L.; Chapman, D.W.; Cronin, J.B.; Newton, M.J.; Gill, N. Fatigue Monitoring in High Performance Sport: A Survey of Current Trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Freitas, V.H.; Nakamura, F.Y.; Miloski, B.; Samulski, D.; Bara-Filho, M.G. Sensitivity of Physiological and Psychological Markers to Training Load Intensification in Volleyball Players. J. Sports Sci. Med. 2014, 13, 571–579. [Google Scholar]
- McLean, B.D.; Coutts, A.J.; Kelly, V.; McGuigan, M.R.; Cormack, S.J. Neuromuscular, Endocrine, and Perceptual Fatigue Responses During Different Length Between-Match Microcycles in Professional Rugby League Players. Int. J. Sports Physiol. Perform. 2010, 5, 367–383. [Google Scholar] [CrossRef]
- Mooney, M.G.; Cormack, S.; O’Brien, B.J.; Morgan, W.M.; McGuigan, M. Impact of Neuromuscular Fatigue on Match Exercise Intensity and Performance in Elite Australian Football. J. Strength Cond. Res. 2013, 27, 166. [Google Scholar] [CrossRef]
- Oliver, J.; Armstrong, N.; Williams, C. Changes in Jump Performance and Muscle Activity Following Soccer-Specific Exercise. J. Sports Sci. 2008, 26, 141–148. [Google Scholar] [CrossRef]
- Nikolaidis, P. Age-Related Differences in Countermovement Vertical Jump in Soccer Players 8–31 Years Old: The Role of Fat-Free Mass. Am. J. Sports Sci. Med. 2014, 2, 60–64. [Google Scholar] [CrossRef]
- Orhan, Ö.; Çimen Polat, S.; Yarim, I. Relationship Between Jump Performance and Sport Ages in U16 Basketball Players. J. Educ. Learn. 2019, 8, 207. [Google Scholar] [CrossRef]
- Kitamura, K.; Pereira, L.A.; Kobal, R.; Cal Abad, C.C.; Finotti, R.; Nakamura, F.Y.; Loturco, I. Loaded and Unloaded Jump Performance of Top-Level Volleyball Players from Different Age Categories. Biol. Sport 2017, 34, 273–278. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Rej, S.J.E.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Bredin, S.S.D.; Taunton, J.; Jiang, Q.; Wu, N.; Warburton, D.E.R. Predicting the Risk of Injuries Through Assessments of Asymmetric Lower Limb Functional Performance: A Prospective Study of 415 Youth Taekwondo Athletes. Orthop. J. Sports Med. 2023, 11, 23259671231185586. [Google Scholar] [CrossRef] [PubMed]
- Philpott, L.K.; Forrester, S.E.; van Lopik, K.A.; Hayward, S.; Conway, P.P.; West, A.A. Countermovement Jump Performance in Elite Male and Female Sprinters and High Jumpers. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 131–138. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of Two Alternative Systems for Measuring Vertical Jump Height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar] [CrossRef]
- Eagles, A.; Sayers, M. Motion Capture System versus Common Force Platform Methodologies for Vertical Jump Analysis. Int. J. Phys. Med. Rehabil. 2016, 4, 1–5. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.; Dietze-Hermosa, M.; Eggleston, J.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021. Ahead of Print. [Google Scholar] [CrossRef]
- Toft Nielsen, E.; Jørgensen, P.B.; Mechlenburg, I.; Sørensen, H. Validation of an Inertial Measurement Unit to Determine Countermovement Jump Height. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2019, 16, 8–13. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of Vertical Jump Measurement Devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Marković, S.; Dopsaj, M.; Tomažič, S.; Kos, A.; Nedeljković, A.; Umek, A. Can IMU Provide an Accurate Vertical Jump Height Estimate? Appl. Sci. 2021, 11, 12025. [Google Scholar] [CrossRef]
- Francia, C.; Motta, F.; Donno, L.; Covarrubias, M.; Dornini, C.; Madella, A.; Galli, M. Validation of a MediaPipe System for Markerless Motion Analysis During Virtual Reality Rehabilitation. In Extended Reality; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 15029, pp. 40–49. ISBN 978-3-031-71709-3. [Google Scholar]
- Marković, S.; Dopsaj, M.; Tomažič, S.; Umek, A. Potential of IMU-Based Systems in Measuring Single Rapid Movement Variables in Females with Different Training Backgrounds and Specialization. Appl. Bionics Biomech. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.; Badicu, G.; Hasan, U.; Akyildiz, Z.; Pino Ortega, J.; Silva, R.; Rico-González, M. Validity and Reliability of Inertial Measurement Units (IMUs) for Jump Height Estimations: A Systematic Review. Hum. Mov. 2021, 23, 1–20. [Google Scholar] [CrossRef]
- Palmieri, M.; Donno, L.; Cimolin, V.; Galli, M. Cervical Range of Motion Assessment through Inertial Technology: A Validity and Reliability Study. Sensors 2023, 23, 6013. [Google Scholar] [CrossRef]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; Van Der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Arlotti, J.S.; Carroll, W.O.; Afifi, Y.; Talegaonkar, P.; Albuquerque, L.; Burch, R.F.V.; Ball, J.E.; Chander, H.; Petway, A. Benefits of IMU-Based Wearables in Sports Medicine: Narrative Review. IJKSS 2022, 10, 36–43. [Google Scholar] [CrossRef]
- Gu, C.; Lin, W.; He, X.; Zhang, L.; Zhang, M. IMU-Based Motion Capture System for Rehabilitation Applications: A Systematic Review. Biomim. Intell. Robot. 2023, 3, 100097. [Google Scholar] [CrossRef]
- Liu, T.; Chen, C.; King, M.; Qian, G.; Fu, J. Balancing Power Consumption and Data Analysis Accuracy Through Adjusting Sampling Rates: Seeking for the Optimal Configuration of Inertial Sensors for Power Wheelchair Users; Duffy, V.G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9185, pp. 184–192. [Google Scholar]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement Jump Analysis Using Different Portable Devices: Implications for Field Testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef]
- Camuncoli, F.; Barni, L.; Nutarelli, S.; Rocchi, J.E.; Barcillesi, M.; Di Dio, I.; Sambruni, A.; Galli, M. Validity of the Baiobit Inertial Measurements Unit for the Assessment of Vertical Double- and Single-Leg Countermovement Jumps in Athletes. IJERPH 2022, 19, 14720. [Google Scholar] [CrossRef] [PubMed]
- Wade, L.; Lichtwark, G.A.; Farris, D.J. Comparisons of Laboratory-Based Methods to Calculate Jump Height and Improvements to the Field-Based Flight-Time Method. Scand. J. Med. Sci. Sports 2020, 30, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Wank, V.; Coenning, C. On the Estimation of Centre of Gravity Height in Vertical Jumping. Ger. J. Exerc. Sport Res. 2019, 49, 454–462. [Google Scholar] [CrossRef]
- Conceição, F.; Lewis, M.; Lopes, H.; Fonseca, E.M.M. An Evaluation of the Accuracy and Precision of Jump Height Measurements Using Different Technologies and Analytical Methods. Appl. Sci. 2022, 12, 511. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A Simple Method for Measurement of Mechanical Power in Jumping. Europ. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Guess, T.M.; Gray, A.D.; Willis, B.W.; Guess, M.M.; Sherman, S.L.; Chapman, D.W.; Mann, J.B. Force-Time Waveform Shape Reveals Countermovement Jump Strategies of Collegiate Athletes. Sports 2020, 8, 159. [Google Scholar] [CrossRef]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement Jump Performance Assessment Using a Wearable 3D Inertial Measurement Unit. J. Sports Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The Need to Report Effect Size Estimates Revisited. An Overview of Some Recommended Measures of Effect Size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cordova, M.L.; Armstrong, C.W. Reliability of Ground Reaction Forces During a Vertical Jump: Implications for Functional Strength Assessment. J. Athl. Train. 1996, 31, 342. [Google Scholar] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Forner-Cordero, A.; Mateu-Arce, M.; Forner-Cordero, I.; Alcántara, E.; Moreno, J.; Pons, J. Study of the Motion Artefacts of Skin-Mounted Inertial Sensors under Different Attachment Conditions. Physiol. Meas. 2008, 29, N21–N31. [Google Scholar] [CrossRef]
Modality | VJHMCap (cm) | VJHFP (cm) | ρs | Systematic Bias (LoA) (cm) |
---|---|---|---|---|
DL-CMJ | 26.2 (5.4) | 25.6 (5.5) | 0.97 * | 0.6 (−2.0 to 3.2) |
R-CMJ | 20.2 (4.7) | 21.5 (5.2) | 0.94 * | −1.3 (−4.3 to 1.7) |
L-CMJ | 19.5 (4.4) | 21.1 (5.0) | 0.93 * | −1.6 (−5.1 to 1.8) |
Modality | VJHGSV (cm) | (cm) | (cm) | (cm) | χ2(3) | W |
---|---|---|---|---|---|---|
DL-CMJ | 24.6 (9.0) | 21.1 (6.8) | 21.1 (9.0) | 21.2 (9.1) | 23.87 * | 0.44 |
R-CMJ | 20.0 (8.6) | 19.1 (7.5) | 13.3 (5.9) | 13.3 (6.7) | 44.53 * | 0.83 |
L-CMJ | 21.6 (7.6) | 19.0 (7.8) | 13.8 (5.6) | 13.9 (8.1) | 49.20 * | 0.91 |
Comparison | Modality | Systematic Bias (LoA) (cm) | pbonf |
---|---|---|---|
VJHGSV vs. | DL-CMJ | 4.0 (−0.9 to 8.8) | <0.001 * |
R-CMJ | 1.5 (−3.9 to 6.9) | 1.000 | |
L-CMJ | 1.9 (−3.2 to 7.1) | 0.151 | |
VJHGSV vs. | DL-CMJ | 3.0 (−0.3 to 6.4) | 0.080 |
R-CMJ | 7.8 (−0.3 to 15.9) | <0.001 * | |
L-CMJ | 7.1 (0.4 to 13.8) | <0.001 * | |
VJHGSV vs. | DL-CMJ | 3.4 (−3.7 to 10.4) | 0.004 * |
R-CMJ | 7.7 (1.2 to 14.1) | <0.001 * | |
L-CMJ | 7.1 (0.5 to 13.7) | <0.001 * | |
DL-CMJ | −0.9 (−3.9 to 2.1) | 0.273 | |
R-CMJ | 6.3 (−2.6 to 15.2) | 0.002 * | |
L-CMJ | 5.1 −2.8 to 13.1) | 0.020 * | |
DL-CMJ | −0.6 (−9.2 to 8.1) | 1.000 | |
R-CMJ | 6.2 (−0.1 to 12.4) | <0.001 * | |
L-CMJ | 5.2 (−0.9 to 11.2) | 0.002 * | |
DL-CMJ | 0.4 (−6.8 to 7.5) | 1.000 | |
R-CMJ | −0.1 (−9.3 to 9.1) | 1.000 | |
L-CMJ | 0.1 (−8.5 to 8.6) | 1.000 |
Method | Modality | VJHGSV | |||
---|---|---|---|---|---|
VJHGSV | DL-CMJ | - | |||
R-CMJ | - | ||||
L-CMJ | - | ||||
DL-CMJ | 0.90 * | - | |||
R-CMJ | 0.85 * | - | |||
L-CMJ | 0.85 * | - | |||
DL-CMJ | 0.93 * | 0.95 * | - | ||
R-CMJ | 0.74 * | 0.63 * | - | ||
L-CMJ | 0.83 * | 0.68 * | - | ||
DL-CMJ | 0.89 * | 0.83 * | 0.89 * | - | |
R-CMJ | 0.80 * | 0.77 * | 0.61 * | - | |
L-CMJ | 0.80 * | 0.84 * | 0.67 * | - |
Modality | VJHGSV | ||||
---|---|---|---|---|---|
ICC(2,1) (95% CI) | DL-CMJ | 0.96 (0.92–0.98) | 0.92 (0.85–0.97) | 0.94 (0.88–0.97) | 0.92 (0.85–0.96) |
R-CMJ | 0.93 (0.89–0.97) | 0.85 (0.73–0.93) | 0.74 (0.58–0.88) | 0.72 (0.55–0.86) | |
L-CMJ | 0.93 (0.86–0.97) | 0.86 (0.74–0.93) | 0.90 (0.82–0.96) | 0.73 (0.56–0.87) | |
Average | 0.94 (0.89–0.97) | 0.88 (0.77–0.94) | 0.83 (0.76–0.94) | 0.79 (0.65–0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, G.; Bonfiglio, A.; Galli, M.; Cimolin, V. Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms. Sensors 2024, 24, 7877. https://doi.org/10.3390/s24247877
Villa G, Bonfiglio A, Galli M, Cimolin V. Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms. Sensors. 2024; 24(24):7877. https://doi.org/10.3390/s24247877
Chicago/Turabian StyleVilla, Giacomo, Alessandro Bonfiglio, Manuela Galli, and Veronica Cimolin. 2024. "Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms" Sensors 24, no. 24: 7877. https://doi.org/10.3390/s24247877
APA StyleVilla, G., Bonfiglio, A., Galli, M., & Cimolin, V. (2024). Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms. Sensors, 24(24), 7877. https://doi.org/10.3390/s24247877