Use of Laccase Enzymes as Bio-Receptors for the Organic Dye Methylene Blue in a Surface Plasmon Resonance Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functionalization of the Thin Chromium–Gold Film and Immobilization of the Laccases
2.2. Calibration Curve and Analysis of Samples
2.3. Analytical Parameters and Validation of the Method
3. Results and Discussion
3.1. Functionalization of the Thin Chromium–Gold Film and Immobilization of the Laccases
3.2. Calibration Curve
3.3. Analysis of Samples, Analytical Parameters, and Validation of the Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sivakumar, R.; Lee, N.Y. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere 2022, 286, 131890. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, M.; Safardoust-Hojaghan, H.; Salavati-Niasari, M. Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 2017, 229, 293–299. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Pubchem. Methylene blue. Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methylene-Blue (accessed on 10 May 2024).
- Ong, S.A.; Toorisaka, E.; Hirata, M.; Hano, T. Treatment of methylene blue-containing wastewater using microorganisms supported on granular activated carbon under packed column operation. Env. Chem. Lett. 2007, 5, 95–99. [Google Scholar] [CrossRef]
- Khan, M.R.; Khan, M.A.; Alothman, Z.A.; Alsohaimi, I.H.; Naushad, M.; Al-Shaalan, N.H. Quantitative Determination of Methylene Blue in Environmental Samples by Solid Phase Extraction and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry: A Green Approach. RSC Adv. 2014, 4, 34037–34044. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef] [PubMed]
- Kaya, N.S.; Yadav, A.; Wehrhold, M.; Zuccaro, L.; Balasubramanian, K. Binding kinetics of methylene blue on monolayer graphene investigated by multiparameter surface plasmon resonance. ACS Omega 2018, 3, 7133–7140. [Google Scholar] [CrossRef] [PubMed]
- Sadrolhosseini, A.R.; Ghasemi, E.; Pirkarimi, A.; Hamidi, S.M.; Ghahrizjani, R.T. Highly sensitive surface plasmon resonance sensor for detection of Methylene Blue and Methylene Orange dyes using NiCo-Layered Double Hydroxide. Opt. Commun. 2023, 529, 129057. [Google Scholar] [CrossRef]
- Sofani, M.; Kuddah, M.S.M.; Putra, M.H.; Djuhana, D. Sensitivity of Localized Surface Plasmon Resonance (LSPR) Au Nanorod with Methylene Blue Medium Using Boundary Element Method Simulation. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; IOP Publishing: Bristol, UK, 2019; p. 12014. [Google Scholar]
- Zhou, Z.; Yang, Z.; Xia, L.; Zhang, H. Construction of an enzyme-based all-fiber SPR biosensor for detection of enantiomers. Biosens. Bioelectron. 2022, 198, 113836. [Google Scholar] [CrossRef]
- Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Blanco-Gámez, E.A.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene. Biosensors 2021, 11, 43. [Google Scholar] [CrossRef]
- Riva, S. Laccases: Blue enzymes for green chemistry. Trends Biotechnol. 2006, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Dettori, M.A.; Fabbri, D.; Dessì, A.; Dallocchio, R.; Carta, P.; Honisch, C.; Ruzza, P.; Farina, D.; Migheli, R.; Serra, P.A.; et al. Synthesis and studies of the inhibitory effect of hydroxylated phenylpropanoids and biphenols derivatives on tyrosinase and laccase enzymes. Molecules 2020, 25, 2709. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Chowdhary, P. Environmental Science Processes & Impacts Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts 2015, 17, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Sharma, D.C.; Bano, A.; Gupta, A.; Sharma, S.; Bajpai, P.; Pathak, N. Chapter 29—Exploiting Microbial Enzymes for Augmenting Crop Production. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 503–519. [Google Scholar]
- Dahlena, M.; Rahayu, F.; Purba, M.L.D.; Nurulita, Y.; Dahliaty, A.; Yanti; Nugroho, T.T. Preliminary Kinetic Studies on the Degradation of the Textile Dye Methyl Blue by Trichoderma asperellum LBKURCC1 Laccase without Mediators. AIP Conf. Proc. 2022, 2638, 100005. [Google Scholar] [CrossRef]
- Forootanfar, H.; Moezzi, A.; Aghaie-Khozani, M.; Mahmoudjanlou, Y.; Ameri, A.; Niknejad, F. Synthetic dye decolorization by three sources of fungal laccase. J. Env. Health Sci. Eng. 2012, 9, 27. [Google Scholar] [CrossRef]
- Rodríguez-Delgado, M.M.; Alemán-Nava, G.S.; Rodríguez-Delgado, J.M.; Dieck-Assad, G.; Martínez-Chapa, S.O.; Barceló, D.; Parra, R. Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal. Chem. 2015, 74, 21–45. [Google Scholar] [CrossRef]
- Ngo, A.C.R.; Tischler, D. Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. Int. J. Environ. Res. Public Heal. 2022, 19, 4740. [Google Scholar] [CrossRef] [PubMed]
- Chivukula, M.; Renganathan, V. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae. 1995. Available online: https://journals.asm.org/journal/aem (accessed on 16 September 2024).
- Nabilah, B.; Purnomo, A.S.; Prasetyoko, D.; Rohmah, A.A. Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix. Arab. J. Chem. 2023, 16, 104940. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Sánchez-Álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M. Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors 2019, 19, 465. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Sánchez-álvarez, A.; Rodríguez-Delgado, M. Optical thickness monitoring as a strategic element for the development of SPR sensing applications. Sensors 2020, 20, 1807. [Google Scholar] [CrossRef]
- Newcastle University. 2024. Coefficient of Determination, R-squared. Numeracy, Maths and Statistics, Academic Skills Kit. Available online: https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/regression-and-correlation/coefficient-of-determination-r-squared.html (accessed on 10 September 2024).
- Eberly College. 2018. The Coefficient of Determination, r-Squared. Applied Regression Analysis. Available online: https://online.stat.psu.edu/stat462/node/95/ (accessed on 14 December 2024).
- Lacour, V.; Moumanis, K.; Hassen, W.M.; Elie-Caille, C.; Leblois, T.; Dubowski, J.J. Formation Kinetics of Mixed Self-Assembled Monolayers of Alkanethiols on GaAs(100). Langmuir 2019, 35, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Wiley. 16-Mercaptohexadecanoic Acid; SpectraBase: Hoboken, NJ, USA, 2021. [Google Scholar]
- Tsai, T.C.; Liu, C.W.; Wu, Y.C.; Ondevilla, N.A.P.; Osawa, M.; Chang, H.C. In situ study of EDC/NHS immobilization on gold surface based on attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Colloids Surf. B Biointerfaces 2019, 175, 300–305. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Ramasamy, U. Idiosyncratic investigation of Trametes versicolor yellow laccase using organic fruit exocarp in solid-state fermentation. Biomass Convers. Biorefin 2023, 13, 14803–14819. [Google Scholar] [CrossRef]
- IUPAC. Matrix Effect. Gold Book. Available online: https://goldbook.iupac.org/terms/view/M03759#:~:text=(in%20analytical%20chemistry)%20The%20combined,is%20referred%20to%20as%20interference (accessed on 18 August 2024).
- USGS.2018. Hardness of Water. Available online: https://www.usgs.gov/special-topics/water-science-school/science/hardness-water (accessed on 30 September 2024).
- Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water pollutants: Origin and status. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Berlin/Heidelberg, Germany, 2020; pp. 5–20. [Google Scholar]
- Domingo, J.L.; Rovira, J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Env. Res. 2020, 187, 109650. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharya, S.G. Airborne fungal spore concentration in an industrial township: Distribution and relation with meteorological parameters. Aerobiologia 2020, 36, 575–587. [Google Scholar] [CrossRef]
- Gong, J.; Qi, J.; Beibei, E.; Yin, Y.; Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 2020, 257, 113485. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Khan, W.A.; Arain, M.B.; Soylak, M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem. Toxicol. 2020, 145, 111704. [Google Scholar] [CrossRef]
- Tavares, A.P.M.; Silva, C.G.; Dražić, G.; Silva, A.M.T.; Loureiro, J.M.; Faria, J.L. Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies. J. Colloid. Interface Sci. 2015, 454, 52–60. [Google Scholar] [CrossRef]
- Datta, S.; Veena, R.; Samuel, M.S.; Selvarajan, E. Immobilization of laccases and applications for the detection and remediation of pollutants: A review. Env. Chem. Lett. 2021, 19, 521–538. [Google Scholar] [CrossRef]
- Othman, A.M.; Sanromán, Á.; Moldes, D. Laccase multi-point covalent immobilization: Characterization, kinetics, and its hydrophobicity applications. Appl. Microbiol. Biotechnol. 2023, 107, 719–733. [Google Scholar] [CrossRef]
Technique | Analytical Parameters or Sample Concentration | Reference |
---|---|---|
UV–Vis spectrophotometry at 661 nm | Samples from 100–1350 mg L−1 | [5] |
SPE–UPLC–MS/MS | LOD of 0.1 ng mL−1, LOQ of 0.4 ng mL−1 | [6] |
UV–Vis spectrophotometer at 668 nm | Samples with 100, 150, and 200 mg L−1 | [7] |
SPR and monolayer graphene | Samples with concentration of 1 µM (0.320 mg L−1) | [8] |
SPR and NiCo-layered double hydroxide | LOD of 0.005 mg L−1 | [9] |
LSPR and Au nanorods | Sensitivity of 103.40523 RIU/nm, 156.46238 RIU/nm, 228.02452 RIU/nm, and 272.10904 RIU/nm for nanorods of 20, 40, 60, and 80 nm, respectively | [10] |
LOD | 4.61 mg L−1 |
LOQ | 15.37 mg L−1 |
Working range | 0–100 mg L−1 |
R2 | 0.9614 |
% of recovery | 122.46 ± 4.41. |
Parameter | Concentration | Parameter | Concentration |
---|---|---|---|
Total hardness | 25 mg/L | Total chlorine | <LOD |
Free chlorine | <LOD | Fluoride | <LOD |
Iron | <LOD | Cyanuric acid | <LOD |
Copper | <LOD | Ammonia chloride | 5 mg/L |
Lead | <LOD | Bromine | 0.5 mg/L |
Nitrate | <LOD | Total alkalinity | <LOD |
Nitrite | <LOD | Carbonate | <LOD |
Monopersulfate | <LOD | pH | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Álvarez, A.; Quintanilla-Villanueva, G.E.; Rodríguez-Quiroz, O.; Rodríguez-Delgado, M.M.; Villarreal-Chiu, J.F.; Sicardi-Segade, A.; Luna-Moreno, D. Use of Laccase Enzymes as Bio-Receptors for the Organic Dye Methylene Blue in a Surface Plasmon Resonance Biosensor. Sensors 2024, 24, 8008. https://doi.org/10.3390/s24248008
Sánchez-Álvarez A, Quintanilla-Villanueva GE, Rodríguez-Quiroz O, Rodríguez-Delgado MM, Villarreal-Chiu JF, Sicardi-Segade A, Luna-Moreno D. Use of Laccase Enzymes as Bio-Receptors for the Organic Dye Methylene Blue in a Surface Plasmon Resonance Biosensor. Sensors. 2024; 24(24):8008. https://doi.org/10.3390/s24248008
Chicago/Turabian StyleSánchez-Álvarez, Araceli, Gabriela Elizabeth Quintanilla-Villanueva, Osvaldo Rodríguez-Quiroz, Melissa Marlene Rodríguez-Delgado, Juan Francisco Villarreal-Chiu, Analía Sicardi-Segade, and Donato Luna-Moreno. 2024. "Use of Laccase Enzymes as Bio-Receptors for the Organic Dye Methylene Blue in a Surface Plasmon Resonance Biosensor" Sensors 24, no. 24: 8008. https://doi.org/10.3390/s24248008
APA StyleSánchez-Álvarez, A., Quintanilla-Villanueva, G. E., Rodríguez-Quiroz, O., Rodríguez-Delgado, M. M., Villarreal-Chiu, J. F., Sicardi-Segade, A., & Luna-Moreno, D. (2024). Use of Laccase Enzymes as Bio-Receptors for the Organic Dye Methylene Blue in a Surface Plasmon Resonance Biosensor. Sensors, 24(24), 8008. https://doi.org/10.3390/s24248008