Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review
Abstract
:1. Introduction
2. Background
2.1. Scintigraphy (2D) and Tomography (3D) Through NMI
2.2. Clinical Applications
2.2.1. Neurology
2.2.2. Oncology
2.2.3. Cardiology
2.3. Diffusion and Transformation Learning
2.3.1. Fully Convolutional Neural Network
2.3.2. Variational Autoencoders
2.3.3. Generative Adversarial Networks
2.3.4. Diffusion
2.4. Evaluation
2.4.1. Image-Related Metrics
2.4.2. Downstream Task–Related Decisions
3. Synthetic NMI
3.1. General MRI and CT in NMI
Ref. | Target | Architecture | Dataset Description | Class |
---|---|---|---|---|
[60] | Translating T1-weighted MRI images to FDG-PET images | U-Net and explainable and simplified image translation | Cognitively normal (300 cases), significant memory concern (54 cases), mild cognitive impairment (868 cases), and Alzheimer’s disease (219 cases) | MRI |
[61] | Improving the synthesis of 3D PET images from MRI images | 3D unsupervised domain adaptation and 2D s-VAE | 146 paired multi-modal MR images from CBICA and 239 paired MR images from TCIA, based on the multi-center BraTS 2019 dataset | MRI |
[62] | Generating synthetic whole-body PET images from whole-body MRI data | 3D residual U-Net | 40 whole-body PET/MRI training exams, 16 whole-body PET/MRI testing exams, and 20 independent pelvic PET/MRI testing exams | MRI |
[63] | Generating sCT images from Dixon MRI for whole-body PET-AC | Modified DeepDixon | 15 whole-body scans, 11 head-and-neck scans, and 20 thorax and pelvis scans with PET/MRI | MRI |
[64] | Generating FDG-PET images from T1-weighted MRI images | Denoising diffusion probabilistic model (DDPM) | 1036 FDG-PET/MRI pairs from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) | MRI |
[65] | Generating synthetic PET from lung CT scans | Cascaded coarse (fine multi-task) | 101 paired imaging data from whole-body sPET | CT |
[66] | Generating beta-amyloid PET images from 3D T1-weighted MRI scans | DDPM | 180 cognitively normal subjects, 163 early mild cognitive impairment patients, 80 late mild cognitive impairment patients, and MRI/PET scans from the ADNI | MRI |
[67] | Creating synthetic PET images of the synaptic vesicle protein 2A (SV2A) from T1-weighted MRI | 3D multi-stage (MS) U-Net | 54 participants from 22 healthy controls and 32 cases with Alzheimer’s disease. | MRI |
[68] | Generating synthetic PET images from 3D MRI scans | 3D MS CycleGAN | 282 subjects from the ADNI | MRI |
[69] | Generating dose map SPECT from CT scans | U-Net transformer | 22 patients to generate reference absorbed dose maps via Monte Carlo simulation | CT |
[70] | Generating synthetic PET images from CT scans | pix2pix with ResU-Net++ | MDA-TRAIN (n = 132), MDA-TEST (n = 75), TCIA-STANFORD (n = 125), LIDC-IDRI (n = 655), NSCLC-RT (n = 359), and MDA-SCREENING (n = 122) | CT |
[71] | Generating PET attenuation maps from MRI without CT data | Sim2Real | BrainWeb dataset with 20 MR scans | MRI |
[72] | Improving Alzheimer’s disease PET scans by leveraging shared MRI scans | ShareGAN with AdaIN | 564 T1-w MRI images and 549 FDG-PET images from ADNI | MRI |
[73] | Generating tau PET images from other types of neuroimaging data | 3D dense U-Net | T1w, FDG-PET, amyloid-PET, and tau-PET (n = 1192, number of scans = 1505) | MRI |
3.2. NMI Translation
Ref. | Target | Architecture | Dataset Description | Class |
---|---|---|---|---|
[79] | Generating full-dose PET images from low-dose PET | CycleGAN | 100 patients who underwent F-FDG PET/CG scans | PET enhancing |
[77] | Generating PET attenuation maps and pseudo-CT images from NAC PET images | pix2pix | 34 lymphoma patients who underwent whole-body PET/CT imaging | Synthetic AC |
[75] | Reducing PET acquisition times while maintaining diagnostic quality | Modified pix2pixHD | 587 PET/CT scans in full-dose or low-dose technique | PET enhancing |
[80] | Improving the quality of low-dose PET images | DuAttRDUNet with FTL | 175 subjects with heterogeneous low-dose PET/CT | PET enhancing |
[85] | Generating sCT images for brain PET-AC from NAC-PET images | IVNAC | Head PET/CT scans of 37 patients | Synthetic AC |
[86] | Generating accurate PET attenuation maps | DeepImage-PET | 100 skull-to-toe FDG-PET/CT scans | Synthetic AC |
[81] | Generating interictal SPECT images from MRI and PET scans | pix2pix | Standard PET, SPECT, and MPRAGE T1-w MRI images from 86 subjects | PET enhancing |
[82] | Denoising PET images by leveraging self-similarity | SMART-PET | 114 human brain data samples from six PET/MRI studies | PET enhancing |
[78] | Generating AC-PET images using NAC-PET | pix2pix | 183 training, 60 validation, and 59 independent testing studies | Synthetic AC |
[91] | Recovering spatially variant deformations in dual-panel PET | 3D U-Net | 70 pairs of reconstructed dual-panel breast PET systems (B-PET) | PET enhancing |
[87] | Generating AC-PET images without CT scans | CycleGAN | Whole-body PET data from 122 subjects (29 females and 93 males) | Synthetic AC |
[83] | Enhancing synthetic PET images from multiple sources | PE-LDM | Mayo low-dose CT dataset and IXI brain MRI dataset: 2377 CT, 7000 MRI, and 7000 PET synthetic images | PET enhancing |
[88] | Enhancing AC-PET with synthetic sCT images from NAC-PET/MRI images | Multiple-loss U-Net | PET/CT and PET/MR scans of 23 female subjects with invasive breast cancer | Synthetic AC |
[89] | Enhancing the accuracy of AC-PET/MRI by generating sCT images | Multi-task U-Net | ZTE and CT scans of 36 pelvic radiotherapy patients | Synthetic AC |
[84] | Generating full-dose PET images from low-dose PET scans | PET-CM | 11,200 slices across 35 patients, from full-dose to quarter-dose | PET enhancing |
[90] | DL-based CT-less AC of brain FDG PET | 3D U-Net | 100 FDG PET-CT brain images of adults with suspected dementia | Synthetic AC |
[76] | Generating and denoising 3D PET images from low-count PET images | DDPET-3D | 5933 images from 1167 patients | PET enhancing |
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Könik, A.; O’Donoghue, J.A.; Wahl, R.L.; Graham, M.M.; Van den Abbeele, A.D. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. Semin. Radiat. Oncol. 2021, 31, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L. Progress in Nuclear Medicine Imaging of Cancers. Prim. Care Clin. Off. Pract. 1998, 25, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Le, D. An Overview of the Regulations of Radiopharmaceuticals. In Locoregional Radionuclide Cancer Therapy: Clinical and Scientific Aspects; Wong, F.C.L., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 225–247. ISBN 978-3-030-56267-0. [Google Scholar]
- Mariani, G.; Bruselli, L.; Kuwert, T.; Kim, E.E.; Flotats, A.; Israel, O.; Dondi, M.; Watanabe, N. A Review on the Clinical Uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1959–1985. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.W.; Carney, J.P.J.; Yap, J.T.; Hall, N.C. PET/CT Today and Tomorrow. J. Nucl. Med. 2004, 45, 4S–14S. [Google Scholar]
- Ge, J.; Zhang, Q.; Zeng, J.; Gu, Z.; Gao, M. Radiolabeling Nanomaterials for Multimodality Imaging: New Insights into Nuclear Medicine and Cancer Diagnosis. Biomaterials 2020, 228, 119553. [Google Scholar] [CrossRef] [PubMed]
- Eary, J.F. Nuclear Medicine in Cancer Diagnosis. Lancet 1999, 354, 853–857. [Google Scholar] [CrossRef]
- Kircher, M.; Lapa, C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. Curr. Cardiovasc. Imaging Rep. 2017, 10, 6. [Google Scholar] [CrossRef]
- Ouvrard, E.; Kaseb, A.; Poterszman, N.; Porot, C.; Somme, F.; Imperiale, A. Nuclear Medicine Imaging for Bone Metastases Assessment: What Else besides Bone Scintigraphy in the Era of Personalized Medicine? Front. Med. 2024, 10, 1320574. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Palestro, C.J. Nuclear Medicine Imaging of Bone Infections. Clin. Radiol. 2016, 71, 632–646. [Google Scholar] [CrossRef]
- Mullan, B.P. Nuclear Medicine Imaging of the Parathyroid. Otolaryngol. Clin. N. Am. 2004, 37, 909–939. [Google Scholar] [CrossRef] [PubMed]
- Skoura, E. Depicting Medullary Thyroid Cancer Recurrence: The Past and the Future of Nuclear Medicine Imaging. Int. J. Endocrinol. Metab. 2013, 11, e8156. [Google Scholar] [CrossRef]
- Hilson, A.J.W. Functional Renal Imaging with Nuclear Medicine. Abdom. Imaging 2003, 28, 0176–0179. [Google Scholar] [CrossRef] [PubMed]
- Kusmirek, J.E.; Magnusson, J.D.; Perlman, S.B. Current Applications for Nuclear Medicine Imaging in Pulmonary Disease. Curr. Pulmonol. Rep. 2020, 9, 82–95. [Google Scholar] [CrossRef]
- Bennink, R.J.; Tulchinsky, M.; de Graaf, W.; Kadry, Z.; van Gulik, T.M. Liver Function Testing with Nuclear Medicine Techniques Is Coming of Age. Semin. Nucl. Med. 2012, 42, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Toney, L.K.; McCue, T.J.; Minoshima, S.; Lewis, D.H. Nuclear Medicine Imaging in Dementia: A Practical Overview for Hospitalists. Hosp. Pract. 2011, 39, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Aghakhanyan, G.; Di Salle, G.; Fanni, S.C.; Francischello, R.; Cioni, D.; Cosottini, M.; Volterrani, D.; Neri, E. Radiomics Insight into the Neurodegenerative “Hot” Brain: A Narrative Review from the Nuclear Medicine Perspective. Front. Nucl. Med. 2023, 3, 1143256. [Google Scholar] [CrossRef]
- Rostami, M.; Oussalah, M.; Berahmand, K.; Farrahi, V. Community Detection Algorithms in Healthcare Applications: A Systematic Review. IEEE Access 2023, 11, 30247–30272. [Google Scholar] [CrossRef]
- Arnaud, M.; Bégaud, B.; Thurin, N.; Moore, N.; Pariente, A.; Salvo, F. Methods for Safety Signal Detection in Healthcare Databases: A Literature Review. Expert. Opin. Drug Saf. 2017, 16, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Le, T.D.; Kwon, S.-Y.; Lee, C. Segmentation and Quantitative Analysis of Photoacoustic Imaging: A Review. Photonics 2022, 9, 176. [Google Scholar] [CrossRef]
- Liu, C.; Amodio, M.; Shen, L.L.; Gao, F.; Avesta, A.; Aneja, S.; Wang, J.C.; Priore, L.V.D.; Krishnaswamy, S. CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation 2024. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024. [Google Scholar]
- Son, J.; Park, S.J.; Jung, K.-H.H. Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks. arXiv 2017, arXiv:1706.09318. [Google Scholar]
- Pinnock, R.; Ritchie, D.; Gallagher, S.; Henning, M.A.; Webster, C.S. The Efficacy of Mindful Practice in Improving Diagnosis in Healthcare: A Systematic Review and Evidence Synthesis. Adv. Health Sci. Educ. 2021, 26, 785–809. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Castelli, M.; Hunter, D.J.; Erskine, J.; Vedsted, P.; Foot, C.; Rubin, G. How Might Healthcare Systems Influence Speed of Cancer Diagnosis: A Narrative Review. Soc. Sci. Med. 2014, 116, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sagheer, S.V.; George, S.N. A Review on Medical Image Denoising Algorithms. Biomed. Signal Process. Control 2020, 61, 102036. [Google Scholar] [CrossRef]
- Kaur, S.; Singla, J.; Nikita; Singh, A. Review on Medical Image Denoising Techniques. In Proceedings of the 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM), Noida, India, 17–19 February 2021; pp. 61–66. [Google Scholar]
- Mroueh, N.; Parakh, A.; Serrao, J.; Lee, S.I.; Eisner, B.H.; Gervais, D.A.; Kambadakone, A.R.; Sahani, D.V. The Why, Who, How, and What of Communicating CT Radiation Risks to Patients and Healthcare Providers. Abdom. Radiol. 2023, 48, 1514–1525. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ya’qoub, L.; Wimmer, A.P.; Fisher, S.; Saeed, I.M. Safety and Clinical Impact of MRI in Patients with Non–MRI-Conditional Cardiac Devices. Radiol. Cardiothorac. Imaging 2020, 2, e200086. [Google Scholar] [CrossRef]
- Oglevee, C.; Pianykh, O. Losing Images in Digital Radiology: More than You Think. J. Digit. Imaging 2015, 28, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, L.; Ravikumar, N.; Attar, R.; Piechnik, S.K.; Neubauer, S.; Petersen, S.E.; Frangi, A.F. Recovering from Missing Data in Population Imaging—Cardiac MR Image Imputation via Conditional Generative Adversarial Nets. Med. Image Anal. 2021, 67, 101812. [Google Scholar] [CrossRef] [PubMed]
- Raad, R.; Ray, D.; Varghese, B.; Hwang, D.; Gill, I.; Duddalwar, V.; Oberai, A.A. Conditional Generative Learning for Medical Image Imputation. Sci. Rep. 2024, 14, 171. [Google Scholar] [CrossRef]
- Yang, H.S.; Rhoads, D.D.; Sepulveda, J.; Zang, C.; Chadburn, A.; Wang, F. Building the Model: Challenges and Considerations of Developing and Implementing Machine Learning Tools for Clinical Laboratory Medicine Practice. Arch. Pathol. Lab. Med. 2022, 147, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Visvikis, D.; Cheze Le Rest, C.; Jaouen, V.; Hatt, M. Artificial Intelligence, Machine (Deep) Learning and Radio(Geno)Mics: Definitions and Nuclear Medicine Imaging Applications. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2630–2637. [Google Scholar] [CrossRef] [PubMed]
- Dayarathna, S.; Islam, K.T.; Uribe, S.; Yang, G.; Hayat, M.; Chen, Z. Deep Learning Based Synthesis of MRI, CT and PET: Review and Analysis. Med. Image Anal. 2024, 92, 103046. [Google Scholar] [CrossRef] [PubMed]
- Giammarile, F.; Knoll, P.; Kunikowska, J.; Paez, D.; Estrada Lobato, E.; Mikhail-Lette, M.; Wahl, R.; Holmberg, O.; Abdel-Wahab, M.; Scott, A.M.; et al. Guardians of Precision: Advancing Radiation Protection, Safety, and Quality Systems in Nuclear Medicine. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1498–1505. [Google Scholar] [CrossRef]
- Visvikis, D.; Lambin, P.; Beuschau Mauridsen, K.; Hustinx, R.; Lassmann, M.; Rischpler, C.; Shi, K.; Pruim, J. Application of Artificial Intelligence in Nuclear Medicine and Molecular Imaging: A Review of Current Status and Future Perspectives for Clinical Translation. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4452–4463. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Wit, H.; Thurston, M. Artificial Intelligence in the Diagnosis of Parkinson’s Disease from Ioflupane-123 Single-Photon Emission Computed Tomography Dopamine Transporter Scans Using Transfer Learning. Nucl. Med. Commun. 2018, 39, 887. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.; Kuang, Y.; Corn, D.; Erokwu, B.; Kolthammer, J.A.; Tian, H.; Wu, C.; Wang, F.; Wang, Y.; Lee, Z. [(Methyl)1-11C]-Acetate Metabolism in Hepatocellular Carcinoma. Mol. Imaging Biol. 2011, 13, 140–151. [Google Scholar] [CrossRef]
- Yoo, S.W.; Kim, D.-Y.; Pyo, A.; Jeon, S.; Kim, J.; Kang, S.-R.; Cho, S.-G.; Lee, C.; Kim, G.-J.; Song, H.-C.; et al. Differences in Diagnostic Impact of Dual-Tracer PET/Computed Tomography According to the Extrahepatic Metastatic Site in Patients with Hepatocellular Carcinoma. Nucl. Med. Commun. 2021, 42, 685. [Google Scholar] [CrossRef]
- Hirata, K.; Sugimori, H.; Fujima, N.; Toyonaga, T.; Kudo, K. Artificial Intelligence for Nuclear Medicine in Oncology. Ann. Nucl. Med. 2022, 36, 123–132. [Google Scholar] [CrossRef]
- Bateman, T.M. Advantages and Disadvantages of PET and SPECT in a Busy Clinical Practice. J. Nucl. Cardiol. 2012, 19, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Betancur, J.; Rubeaux, M.; Fuchs, T.; Otaki, Y.; Arnson, Y.; Slipczuk, L.; Benz, D.; Germano, G.; Dey, D.; Lin, C.-J.; et al. Automatic Valve Plane Localization in Myocardial Perfusion SPECT/CT by Machine Learning: Anatomical and Clinical Validation. J. Nucl. Med. 2016, 58, 961–967. [Google Scholar] [CrossRef]
- Otaki, Y.; Singh, A.; Kavanagh, P.; Miller, R.J.H.; Parekh, T.; Tamarappoo, B.K.; Sharir, T.; Einstein, A.J.; Fish, M.B.; Ruddy, T.D.; et al. Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC Cardiovasc. Imaging 2022, 15, 1091–1102. [Google Scholar] [CrossRef]
- Currie, G.; Rohren, E. Intelligent Imaging in Nuclear Medicine: The Principles of Artificial Intelligence, Machine Learning and Deep Learning. Semin. Nucl. Med. 2021, 51, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation 2015. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes 2022. arXiv 2022, arXiv:1312.6114v11. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks 2018. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models 2020. arXiv 2020, arXiv:2006.11239v1. [Google Scholar]
- Chen, K.T.; Gong, E.; de Carvalho Macruz, F.B.; Xu, J.; Boumis, A.; Khalighi, M.; Poston, K.L.; Sha, S.J.; Greicius, M.D.; Mormino, E.; et al. Ultra–Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. Radiology 2019, 290, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, B.; Wang, L.; Zu, C.; Lalush, D.S.; Lin, W.; Wu, X.; Zhou, J.; Shen, D.; Zhou, L. 3D Conditional Generative Adversarial Networks for High-Quality PET Image Estimation at Low Dose. NeuroImage 2018, 174, 550–562. [Google Scholar] [CrossRef]
- Zhuang, Y.; Mathai, T.S.; Mukherjee, P.; Summers, R.M. Segmentation of Pelvic Structures in T2 MRI via MR-to-CT Synthesis. Comput. Med. Imaging Graph. 2024, 112, 102335. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi Boroojeni, P.; Chen, Y.; Commean, P.K.; Eldeniz, C.; Skolnick, G.B.; Merrill, C.; Patel, K.B.; An, H. Deep-Learning Synthesized Pseudo-CT for MR High-Resolution Pediatric Cranial Bone Imaging (MR-HiPCB). Magn. Reson. Med. 2022, 88, 2285–2297. [Google Scholar] [CrossRef]
- Khan, S.U.; Ullah, N.; Ahmed, I.; Ahmad, I.; Mahsud, M.I. MRI Imaging, Comparison of MRI with Other Modalities, Noise in MRI Images and Machine Learning Techniques for Noise Removal: A Review. Curr. Med. Imaging Rev. 2019, 15, 243–254. [Google Scholar] [CrossRef]
- Domingues, I.; Pereira, G.; Martins, P.; Duarte, H.; Santos, J.; Abreu, P.H. Using Deep Learning Techniques in Medical Imaging: A Systematic Review of Applications on CT and PET. Artif. Intell. Rev. 2020, 53, 4093–4160. [Google Scholar] [CrossRef]
- Kinahan, P.E.; Hasegawa, B.H.; Beyer, T. X-Ray-Based Attenuation Correction for Positron Emission Tomography/Computed Tomography Scanners. Semin. Nucl. Med. 2003, 33, 166–179. [Google Scholar] [CrossRef]
- Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; la Fougère, C.; Mariani, G.; Massalha, S.; et al. Two Decades of SPECT/CT—The Coming of Age of a Technology: An Updated Review of Literature Evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. [Google Scholar] [CrossRef]
- Balaji, V.; Song, T.-A.; Malekzadeh, M.; Heidari, P.; Dutta, J. Artificial Intelligence for PET and SPECT Image Enhancement. J. Nucl. Med. 2024, 65, 4–12. [Google Scholar] [CrossRef]
- Kao, C.-H.; Chen, Y.-S.; Chen, L.-F.; Chiu, W.-C. Demystifying T1-MRI to FDG-18-PET Image Translation via Representational Similarity. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021, Strasbourg, France, 27 September–1 October 2021; de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 402–412. [Google Scholar]
- Hu, Q.; Li, H.; Zhang, J. Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 495–504. [Google Scholar]
- Rajagopal, A.; Natsuaki, Y.; Wangerin, K.; Hamdi, M.; An, H.; Sunderland, J.J.; Laforest, R.; Kinahan, P.E.; Larson, P.E.Z.; Hope, T.A. Synthetic PET via Domain Translation of 3-D MRI. IEEE Trans. Radiat. Plasma Med. Sci. 2023, 7, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, S.; Beck Olin, A.; Kinggård Federspiel, M.; Jakoby, B.; Andersen, T.L.; Hansen, A.E.; Fischer, B.M.; Littrup Andersen, F. A Deep Learning-Based Whole-Body Solution for PET/MRI Attenuation Correction. EJNMMI Phys. 2022, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Hosseini, A.A.; Weng, Y.; Dening, T.; Zuo, G. Two-Stage Diffusion Model Deriving FDG-PET from T1 Weighted Magnetic Resonance Images for Diagnosis of Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, e076076. [Google Scholar] [CrossRef]
- Dong, B.; Zheng, R.; Sun, X.; Chen, M.; Li, Q. Delineation of Primary Lung Cancer with Atelectasis Assisted by GANs-Based Synthetic PET Images from CT. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, e617. [Google Scholar] [CrossRef]
- Lyu, Q.; Kim, J.Y.; Kim, J.; Whitlow, C.T. Synthesizing Beta-Amyloid PET Images from T1-Weighted Structural MRI: A Preliminary Study 2024. arXiv 2024, arXiv:2409.18282. [Google Scholar]
- Zheng, X.; Worhunsky, P.; Liu, Q.; Zhou, B.; Chen, X.; Guo, X.; Xie, H.; Sun, H.; Zhang, J.; Toyonaga, T.; et al. Generation of Synthetic Brain PET Images of Synaptic Density from MRI and FDG-PET Using a Multi-Stage U-Net. In Proceedings of the 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), Tampa, FL, USA, 26 October–2 November 2024; pp. 1–2. [Google Scholar]
- Khojaste-Sarakhsi, M.; Haghighi, S.S.; Ghomi, S.M.T.F.; Marchiori, E. A 3D Multi-Scale CycleGAN Framework for Generating Synthetic PETs from MRIs for Alzheimer’s Disease Diagnosis. Image Vis. Comput. 2024, 146, 105017. [Google Scholar] [CrossRef]
- Mansouri, Z.; Salimi, Y.; Akhavanallaf, A.; Shiri, I.; Teixeira, E.P.A.; Hou, X.; Beauregard, J.-M.; Rahmim, A.; Zaidi, H. Deep Transformer-Based Personalized Dosimetry from SPECT/CT Images: A Hybrid Approach for [177Lu]Lu-DOTATATE Radiopharmaceutical Therapy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1516–1529. [Google Scholar] [CrossRef] [PubMed]
- Salehjahromi, M.; Karpinets, T.V.; Sujit, S.J.; Qayati, M.; Chen, P.; Aminu, M.; Saad, M.B.; Bandyopadhyay, R.; Hong, L.; Sheshadri, A.; et al. Synthetic PET from CT Improves Diagnosis and Prognosis for Lung Cancer: Proof of Concept. Cell Rep. Med. 2024, 5, 101463. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shigeki, Y.; Yamakawa, Y.; Tsutsumida, Y.; Mizuta, T.; Hanaoka, K.; Watanabe, S.; Morimoto-Ishikawa, D.; Yamada, T.; Kaida, H.; et al. Generating PET Attenuation Maps via Sim2Real Deep Learning–Based Tissue Composition Estimation Combined with MLACF. J. Digit. Imaging. Inform. Med. 2024, 37, 167–179. [Google Scholar] [CrossRef]
- Wang, C.; Piao, S.; Huang, Z.; Gao, Q.; Zhang, J.; Li, Y.; Shan, H. Joint Learning Framework of Cross-Modal Synthesis and Diagnosis for Alzheimer’s Disease by Mining Underlying Shared Modality Information. Med. Image Anal. 2024, 91, 103032. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Burkett, B.J.; Min, H.-K.; Senjem, M.L.; Dicks, E.; Corriveau-Lecavalier, N.; Mester, C.T.; Wiste, H.J.; Lundt, E.S.; Murray, M.E.; et al. Synthesizing Images of Tau Pathology from Cross-Modal Neuroimaging Using Deep Learning. Brain 2024, 147, 980–995. [Google Scholar] [CrossRef]
- Enlow, E.; Abbaszadeh, S. State-of-the-Art Challenges and Emerging Technologies in Radiation Detection for Nuclear Medicine Imaging: A Review. Front. Phys. 2023, 11, 1106546. [Google Scholar] [CrossRef]
- Hosch, R.; Weber, M.; Sraieb, M.; Flaschel, N.; Haubold, J.; Kim, M.-S.; Umutlu, L.; Kleesiek, J.; Herrmann, K.; Nensa, F.; et al. Artificial Intelligence Guided Enhancement of Digital PET: Scans as Fast as CT? Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4503–4515. [Google Scholar] [CrossRef]
- Xie, H.; Gan, W.; Zhou, B.; Chen, M.-K.; Kulon, M.; Boustani, A.; Spencer, B.A.; Bayerlein, R.; Ji, W.; Chen, X.; et al. Dose-Aware Diffusion Model for 3D Low-Dose PET: Multi-Institutional Validation with Reader Study and Real Low-Dose Data 2024. arXiv 2024, arXiv:2405.12996. [Google Scholar]
- Li, Q.; Zhu, X.; Zou, S.; Zhang, N.; Liu, X.; Yang, Y.; Zheng, H.; Liang, D.; Hu, Z. Eliminating CT Radiation for Clinical PET Examination Using Deep Learning. Eur. J. Radiol. 2022, 154, 110422. [Google Scholar] [CrossRef]
- Ma, K.C.; Mena, E.; Lindenberg, L.; Lay, N.S.; Eclarinal, P.; Citrin, D.E.; Pinto, P.A.; Wood, B.J.; Dahut, W.L.; Gulley, J.L.; et al. Deep Learning-Based Whole-Body PSMA PET/CT Attenuation Correction Utilizing Pix-2-Pix GAN. Oncotarget 2024, 15, 288–300. [Google Scholar] [CrossRef]
- Sanaat, A.; Shiri, I.; Arabi, H.; Mainta, I.; Nkoulou, R.; Zaidi, H. Whole-Body PET Image Synthesis from Low-Dose Images Using Cycle-Consistent Generative Adversarial Networks. In Proceedings of the 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Boston, MA, USA, 31 October–7 November 2020; pp. 1–3. [Google Scholar]
- Zhou, B.; Miao, T.; Mirian, N.; Chen, X.; Xie, H.; Feng, Z.; Guo, X.; Li, X.; Zhou, S.K.; Duncan, J.S.; et al. Federated Transfer Learning for Low-Dose PET Denoising: A Pilot Study with Simulated Heterogeneous Data. IEEE Trans. Radiat. Plasma Med. Sci. 2023, 7, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Fard, A.S.; Reutens, D.C.; Ramsay, S.C.; Goodman, S.J.; Ghosh, S.; Vegh, V. Image Synthesis of Interictal SPECT from MRI and PET Using Machine Learning. Front. Neurol. 2024, 15, 1383773. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Zhang, D.; Liu, L.; Moyaert, P.; Burneo, J.; Dada, M.; Hicks, J.; Finger, E.; Soddu, A.; Andrade, A.; et al. Self-Similarity Awareness in PET Image Denoising: A Quantitative Evaluation of SMART-PET Framework for [18F]-FDG-PET Image Denoising. J. Nucl. Med. 2024, 65, 242096. [Google Scholar]
- Shi, Y.; Xia, W.; Niu, C.; Wiedeman, C.; Wang, G. Enabling Competitive Performance of Medical Imaging with Diffusion Model-Generated Images without Privacy Leakage 2024. arXiv 2023, arXiv:2301.06604. [Google Scholar]
- Pan, S.; Abouei, E.; Peng, J.; Qian, J.; Wynne, J.F.; Wang, T.; Chang, C.-W.; Roper, J.; Nye, J.A.; Mao, H.; et al. Full-Dose Whole-Body PET Synthesis from Low-Dose PET Using High-Efficiency Denoising Diffusion Probabilistic Model: PET Consistency Model 2024. Med. Phys. 2024, 51, 5468–5478. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Shen, B.; Jiang, S.; Shi, X.; Zhang, X.; Li, B.; Liu, Q. Synthetic CT Generation via Variant Invertible Network for Brain PET Attenuation Correction. IEEE Trans. Radiat. Plasma Med. Sci. 2024. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, J.; Toyonaga, T.; Shao, D.; Onofrey, J.A.; Lu, Y. Deep Learning-Based Attenuation Map Generation with Simultaneously Reconstructed PET Activity and Attenuation and Low-Dose Application. Phys. Med. Biol. 2023, 68, 035014. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Chen, Z.; Jiang, Y.; Zhou, C.; Zhang, X.; Fan, W.; Zhao, Y.; Zhang, L.; Wan, L.; et al. Learning CT-Free Attenuation-Corrected Total-Body PET Images through Deep Learning. Eur. Radiol. 2024, 34, 5578–5587. [Google Scholar] [CrossRef]
- Li, X.; Johnson, J.M.; Strigel, R.M.; Bancroft, L.C.H.; Hurley, S.A.; Estakhraji, S.I.Z.; Kumar, M.; Fowler, A.M.; McMillan, A.B. Attenuation Correction and Truncation Completion for Breast PET/MR Imaging Using Deep Learning. Phys. Med. Biol. 2024, 69, 045031. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, J.J.; Kaushik, S.; Cozzini, C.; Pearson, R.A.; Petrides, G.; Wiesinger, F.; McCallum, H.M.; Maxwell, R.J. Evaluating a Radiotherapy Deep Learning Synthetic CT Algorithm for PET-MR Attenuation Correction in the Pelvis. EJNMMI Phys. 2024, 11, 10. [Google Scholar] [CrossRef]
- Partin, L.; Spottiswoode, B.; Hayden, C.; Armstrong, I.; Fahmi, R. Deep Learning-Based CT-Less Attenuation Correction of Brain FDG PET. J. Nucl. Med. 2024, 65, 242223. [Google Scholar]
- Raj, J.; Millardet, M.; Krishnamoorthy, S.; Karp, J.S.; Surti, S.; Matej, S. Recovery of the Spatially-Variant Deformations in Dual-Panel PET Reconstructions Using Deep-Learning. Phys. Med. Biol. 2024, 69, 055028. [Google Scholar] [CrossRef]
- Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.C.; Komorowski, M.; Harvey, H.; Topol, E.J.; Ioannidis, J.P.A.; Collins, G.S.; Maruthappu, M. Artificial Intelligence versus Clinicians: Systematic Review of Design, Reporting Standards, and Claims of Deep Learning Studies. BMJ 2020, 368, m689. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Matsui, Y.; Yamada, A.; Fujioka, T.; Yanagawa, M.; Nakaura, T.; Ito, R.; Ueda, D.; Fujita, S.; Tatsugami, F.; et al. Generative AI and Large Language Models in Nuclear Medicine: Current Status and Future Prospects. Ann. Nucl. Med. 2024, 38, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Koitka, S.; Baldini, G.; Kroll, L.; van Landeghem, N.; Pollok, O.B.; Haubold, J.; Pelka, O.; Kim, M.; Kleesiek, J.; Nensa, F.; et al. SAROS: A Dataset for Whole-Body Region and Organ Segmentation in CT Imaging. Sci. Data 2024, 11, 483. [Google Scholar] [CrossRef]
- Jung, M.; Raghu, V.K.; Reisert, M.; Rieder, H.; Rospleszcz, S.; Pischon, T.; Niendorf, T.; Kauczor, H.-U.; Völzke, H.; Bülow, R.; et al. Deep Learning-Based Body Composition Analysis from Whole-Body Magnetic Resonance Imaging to Predict All-Cause Mortality in a Large Western Population. eBioMedicine 2024, 110, 105467. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wu, Z.; Qi, Y.; Wu, B.; Zhu, X. The Metastasizing Mechanisms of Lung Cancer: Recent Advances and Therapeutic Challenges. Biomed. Pharmacother. 2021, 138, 111450. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.D.; Shitiri, N.C.; Jung, S.-H.; Kwon, S.-Y.; Lee, C. Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review. Sensors 2024, 24, 8068. https://doi.org/10.3390/s24248068
Le TD, Shitiri NC, Jung S-H, Kwon S-Y, Lee C. Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review. Sensors. 2024; 24(24):8068. https://doi.org/10.3390/s24248068
Chicago/Turabian StyleLe, Thanh Dat, Nchumpeni Chonpemo Shitiri, Sung-Hoon Jung, Seong-Young Kwon, and Changho Lee. 2024. "Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review" Sensors 24, no. 24: 8068. https://doi.org/10.3390/s24248068
APA StyleLe, T. D., Shitiri, N. C., Jung, S.-H., Kwon, S.-Y., & Lee, C. (2024). Image Synthesis in Nuclear Medicine Imaging with Deep Learning: A Review. Sensors, 24(24), 8068. https://doi.org/10.3390/s24248068