Comparative Analysis of Low-Cost Portable Spectrophotometers for Colorimetric Accuracy on the RAL Design System Plus Color Calibration Target
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectrophotometers
2.2. Measurements
- Labeled values were calculated from the RAL+ color label (e.g., 010 60 15 translates to 60, 14.8, 2.6),
- Assessed values are the actual RAL+ color values, as evaluated by the portable spectrophotometer manufacturers (e.g., Spectro 1 Pro manufacturer foresaw 62.1, 14.3, 2.0 for the RAL+ color 010 60 15),
- Measured values were estimated in this study using portable spectrophotometers or a smartphone (e.g., 59.4 15.2 2.4 for the RAL+ color 010 60 15 by Nix Spectro 2 spectrophotometer),
2.3. RAL+ Color-Matching Accuracy
2.4. Color Difference
3. Results and Discussion
3.1. Color-Matching Accuracy
3.2. Accuracy in ΔE00
3.3. Overall Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broadbent, A.D. Colorimetry, Methods. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 321–327. [Google Scholar]
- Witzel, C.; Gegenfurtner, K.R. Color Perception: Objects, Constancy, and Categories. Annu. Rev. Vis. Sci. 2018, 4, 475–499. [Google Scholar] [CrossRef]
- Xiao, B.; Brainard, D.H. Surface Gloss and Color Perception of 3D Objects. Vis. Neurosci. 2008, 25, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Emery, K.J.; Webster, M.A. Individual Differences and Their Implications for Color Perception. Vis. Percept. 2019, 30, 28–33. [Google Scholar] [CrossRef]
- Gu, H.T.; Pointer, M.R.; Liu, X.Y.; Ronnier Luo, M. Quantifying the Suitability of CIE D50 and a Simulators Based on LED Light Sources. Color Res. Appl. 2017, 42, 408–418. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Muñoz, M.P.; Lorenzo Luengo, M.C.; Vicente, P.; Galindo, P.; Martín Casado, A.M. Comparison of the CIELab and CIEDE2000 Color Difference Formulas. J. Prosthet. Dent. 2016, 115, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Mokrzycki, W.; Tatol, M. Color Difference Delta E—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Anowar Hossain, M. Simulation of Chromatic and Achromatic Assessments for Camouflage Textiles and Combat Background. J. Def. Model. Simul. 2023, 20, 317–332. [Google Scholar] [CrossRef]
- Cherubini, F.; Casini, A.; Cucci, C.; Picollo, M.; Stefani, L. Application of a Hyperspectral Camera for Colorimetric Measurements on Polychrome Surfaces in a Controlled Environment and Evaluation of Three Image Processing Software for Displaying Colorimetric Data: Pros and Cons of the Methodology Presented. Color Res. Appl. 2023, 48, 210–221. [Google Scholar] [CrossRef]
- Piliero, M.A.; Pupillo, F.; Presilla, S. A Diffuse Reflectance Spectrophotometer for Radiation Dosimetry of EBT3 GAFchromic Films. Radiat. Meas. 2022, 154, 106777. [Google Scholar] [CrossRef]
- Cugmas, B.; Štruc, E. Accuracy of an Affordable Smartphone-Based Teledermoscopy System for Color Measurements in Canine Skin. Sensors 2020, 20, 6234. [Google Scholar] [CrossRef]
- Abebe, M.; Hardeberg, J.Y.; Vartdal, G. Smartphones’ Skin Colour Reproduction Analysis for Neonatal Jaundice Detection. J. Imaging Sci. Technol. 2021, 65, 060407. [Google Scholar] [CrossRef]
- Bernard, G.; Rompré, P.; Tavares, J.R.; Montpetit, A. Colorimetric and Spectrophotometric Measurements of Orthodontic Thermoplastic Aligners Exposed to Various Staining Sources and Cleaning Methods. Head Face Med. 2020, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Cugmas, B.; Olivry, T. Evaluation of Skin Erythema Severity by Dermatoscopy in Dogs with Atopic Dermatitis. Vet. Dermatol. 2020, 32, 183-e46. [Google Scholar] [CrossRef]
- Mulcare, D.C.; Coward, T.J. Suitability of a Mobile Phone Colorimeter Application for Use as an Objective Aid When Matching Skin Color during the Fabrication of a Maxillofacial Prosthesis. J. Prosthodont. 2019, 28, 934–943. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Zhang, Y.; Ozcan, A. Color Calibration and Fusion of Lens-Free and Mobile-Phone Microscopy Images for High-Resolution and Accurate Color Reproduction. Sci. Rep. 2016, 6, 27811. [Google Scholar] [CrossRef]
- Charrière, R.; Hébert, M.; Trémeau, A.; Destouches, N. Color Calibration of an RGB Camera Mounted in Front of a Microscope with Strong Color Distortion. Appl. Opt. 2013, 52, 5262–5271. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Morioka, S. Comparative Study on Measurements of Radiochromic Films Using Portable Colorimeters. Sci. Rep. 2024, 14, 3384. [Google Scholar] [CrossRef] [PubMed]
- Domanda, C.; Blanco, I.; Buccolieri, R.; Rustioni, L. Anti-Hail Nets in Viticulture: Do They Affect White Grape Quality in the Mediterranean Region? Agriculture 2024, 14, 1438. [Google Scholar] [CrossRef]
- Moritsuka, N.; Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Andriamananjara, A.; Rakotoson, T.; Razafimbelo, T. Comparison of Visual and Instrumental Measurements of Soil Color with Different Low-Cost Colorimeters. Soil Sci. Plant Nutr. 2019, 65, 605–615. [Google Scholar] [CrossRef]
- Dang, D.S.; Buhler, J.F.; Stafford, C.D.; Taylor, M.J.; Shippen, J.E.; Dai, X.; England, E.M.; Matarneh, S.K. Nix Pro 2 and Color Muse as Potential Colorimeters for Evaluating Color in Foods. LWT 2021, 147, 111648. [Google Scholar] [CrossRef]
- Wheeler, B. Analysis of Low-Cost Color Sensor Device Performance as Compared to Standardized Spectrophotometers. Master’s Thesis, Clemson University, Clemson, SC, USA, 2022. Available online: https://open.clemson.edu/all_theses/3722/ (accessed on 16 December 2024).
- Kirchner, E.; Koeckhoven, P.; Sivakumar, K. Improving Color Accuracy of Colorimetric Sensors. Sensors 2018, 18, 1252. [Google Scholar] [CrossRef] [PubMed]
- Downloads|RAL Colours. Available online: https://www.ral-farben.de/en/downloads (accessed on 3 September 2024).
- Cugmas, B.; Jasmin, P.; Samec, J.; Štruc, E. Repeatability and Inter-Instrument Agreement of Clinically Feasible Skin Color Measurements in Dogs. In Proceedings of the 10th World Congress of Veterinary Dermatology, Boston, MA, USA, 25–29 July 2024; p. P-71. [Google Scholar] [CrossRef]
Spectrophotometer | Nix Spectro 2 a | Spectro 1 Pro b | ColorReader c | Pico d |
---|---|---|---|---|
Price (USD) | ~1200 | ~300 | ~130 | ~120 |
Resolution | 31 channels (10 nm steps between 400–700 nm) | 31 channels (10 nm steps between 400–700 nm) | 3 (RGB) | 3 (RGB) |
Geometry | 45° (ring)/0° | Diffuse/0° | ~35° (ring)/0° e | ~35°/~35° e |
Illumination | 8 CRI LEDs | Full-spectrum LEDs | 6 CRI LEDs | 3 (LED) floodlights |
Illuminants | A, C, D50, D55, D65, D75, F2, F7, F11 | A, F2, D50, D65 | / | / |
Observer | 2°, 10° | 2°, 10° | / | / |
Calibration steps | 1 | 3 | 1 | 1 |
Claimed average inter-instrument agreement | 0.35 ΔE00 | 0.35 ΔE00 | / f | / f |
Libraries | Several (incl. RAL, Pantone, NCS) | Several (incl. RAL, Pantone, NCS) | Several (incl. RAL, NCS) | Several (incl. RAL, NCS) |
Color-Matching Accuracy (%) | Nix Spectro 2 | Spectro 1 Pro | ColorReader a | Pico b | Smartphone b |
---|---|---|---|---|---|
(a) Strict | 98.4 | 76.0 (86.3 c) | 78.5 | 24.0 | 47.5 |
(b) Loose | 99.5 | 86.3 | 86.2 | 53.6 | 76.5 |
Comparison | Nix Spectro 2 | Spectro 1 Pro | ColorReader | Pico | Smartphone |
---|---|---|---|---|---|
(a) Measured vs. labeled * | 1.87 [0.38 1.32 2.42 4.34] | 1.79 [0.42 1.04 3.59 9.41] | 1.27 [0.33 0.84 1.83 7.19] | 3.95 [1.23 2.64 5.88 12.84] | / b |
(b) Measured vs. assessed | 0.52 [0.16 0.43 0.66 1.30] | 1.07 [0.21 0.74 1.53 3.63] | 1.39 [0.01 0.98 1.83 4.31] | / a | / b |
(c) Normalized vs. labeled | 1.01 [0.19 0.73 1.43 3.83] | 1.19 [0.14 0.86 1.60 7.14] | 1.11 [0.20 0.77 1.61 6.33] | 1.88 [0.26 1.23 2.85 7.37] | 1.84 [0.20 1.21 3.21 8.51] |
Device | RAL+ Color Matching | ΔE00 a | Price |
---|---|---|---|
(1) Nix Spectro 2 | almost perfect (~99%) | 0.52–1.05 | ~USD 1200 |
(2) Spectro 1 Pro, ColorReader | very good (~85%) | 1.07–1.39 | USD 130–300 |
(3) Pico, smartphone Asus 8 | good (~54–76%) | ~1.85 | USD 120–400 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samec, J.; Štruc, E.; Berzina, I.; Naglič, P.; Cugmas, B. Comparative Analysis of Low-Cost Portable Spectrophotometers for Colorimetric Accuracy on the RAL Design System Plus Color Calibration Target. Sensors 2024, 24, 8208. https://doi.org/10.3390/s24248208
Samec J, Štruc E, Berzina I, Naglič P, Cugmas B. Comparative Analysis of Low-Cost Portable Spectrophotometers for Colorimetric Accuracy on the RAL Design System Plus Color Calibration Target. Sensors. 2024; 24(24):8208. https://doi.org/10.3390/s24248208
Chicago/Turabian StyleSamec, Jaša, Eva Štruc, Inese Berzina, Peter Naglič, and Blaž Cugmas. 2024. "Comparative Analysis of Low-Cost Portable Spectrophotometers for Colorimetric Accuracy on the RAL Design System Plus Color Calibration Target" Sensors 24, no. 24: 8208. https://doi.org/10.3390/s24248208
APA StyleSamec, J., Štruc, E., Berzina, I., Naglič, P., & Cugmas, B. (2024). Comparative Analysis of Low-Cost Portable Spectrophotometers for Colorimetric Accuracy on the RAL Design System Plus Color Calibration Target. Sensors, 24(24), 8208. https://doi.org/10.3390/s24248208