An Airborne Arc Array Synthetic Aperture Radar Vibration Error Compensation Method
Abstract
:1. Introduction
2. Arc Array Imaging Geometry
2.1. Instantaneous Slant Distance Model
2.2. Resolution Analysis
3. Vibration Modelling Analysis
3.1. Signal Modelling under the Vibration Model
3.2. Vibration Impact Analysis
3.2.1. Direction of Vibration
3.2.2. Amplitude of Vibration
3.2.3. Frequency of Vibration
4. Vibration Compensation Algorithm
Algorithmic Process
5. Simulation Analysis
5.1. Vibration Impact Analysis
5.1.1. Direction of Vibration
5.1.2. Amplitude of Vibration
5.1.3. Frequency of Vibration
5.2. Algorithm Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, P.; Hao, L.; Tan, W.; Xu, W.; Qi, Y. An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter. Sensors 2022, 22, 4725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, P.; Xu, W.; Tan, W.; Qi, Y. A Modified Keystone-Based Forward-Looking Arc Array Synthetic Aperture Radar 3D Imaging Method. Sensors 2023, 23, 2674. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, L.; Zheng, Q.; Zhu, Y.; Sheng, J. A Novel High-Frequency Vibration Error Estimation and Compensation Algorithm for THz-SAR Imaging Based on Local FrFT. Sensors 2020, 20, 2669. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Ke, L.; Cabrera, S.D.; Flores, B.C. Evaluation of time-frequency filtering for SAR/ISAR motion compensation via instantaneous frequency estimators. Proc. SPIE Int. Soc. Opt. Eng. 1996, 2845, 141–150. [Google Scholar]
- Xu, Z. A Spatial Variant Motion Compensation Algorithm for High-Mono frequency Motion Error in Mini-UAV-Based BiSAR Systems. Remote Sens. 2021, 13, 3544. [Google Scholar]
- Wang, R.; Wang, B.; Wang, Z.; Song, C.; Xiang, M.; Wang, Y. Time-varying Vibration Compensation for FMCW Lidar Signals. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021; pp. 1397–1400. [Google Scholar]
- Wang, Z.; Wang, Y.; Dong, Y.; Shen, X.; Tian, G. Novel Approach of Motion Compensation for the Terahertz SAR Imaging Based on Measured Data. In Proceedings of the 2021 IEEE International Geo-Science and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5171–5174. [Google Scholar]
- Zhang, P.; Zhu, C. Vibration Control of Base-Excited Rotors Supported by Active Magnetic Bearing Using a Model-Based Compensation Method. IEEE Trans. Ind. Electron. 2023, 71, 261–270. [Google Scholar] [CrossRef]
- Sun, J.; Hao, Z.; Li, Q.; Li, D. Vibration Compensation of Airborne Terahertz SAR Based on Along Track Interferometry. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wang, R.; Wang, B.; Wang, Y.; Li, W.; Wang, Z.; Xiang, M. Time-Varying Vibration Compensation Based on Segmented Interference for Triangular FMCW LiDAR Signals. Remote Sens. 2021, 13, 3803. [Google Scholar] [CrossRef]
- Cantalloube, H.M.J.; Nahum, C.E. Multiscale Local Map-Drift-Driven Multilateration SAR Autofocus Using Fast Polar Format Image Synthesis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3730–3736. [Google Scholar] [CrossRef]
- Samczynski, P. Superconvergent Velocity Estimator for an Autofocus Coherent MapDrift Technique. IEEE Geosci. Remote Sens. Lett. 2012, 9, 204–208. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Han, K. Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR. Sensors 2017, 17, 2950. [Google Scholar] [CrossRef]
- Kolman, J. Image Reconstruction and Restoration Using Constrained Optimization Algorithms. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1996. [Google Scholar]
- Kolman, J. PACE: An Autofocus Algorithm for SAR. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 310–314. [Google Scholar]
- Kragh, T.J.; Kharbouch, A.A. Monotonic Iterative Algorithms for SAR Image Restoration. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 645–648. [Google Scholar]
- Xiong, T.; Xing, M.; Wang, Y. Minimum-Entropy-Based Autofocus Algorithm for SAR Data Using Chebyshev Approximation and Method of Series Reversion, and Its Implementation in a Data Processor. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1719–1728. [Google Scholar] [CrossRef]
- Ash, J.N. An autofocus method for backprojection imagery in synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2011, 9, 104–108. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Cao, R. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform. J. Syst. Eng. Electron. 2023, 34, 894–905. [Google Scholar] [CrossRef]
- Zhou, Y. Research on Key Technology of Dual-Channel SAR Micromotion Target Detection and Parameter Estimation. Ph.D. Thesis, National University of Defence Technology, Changsha, China, 2023. [Google Scholar]
- Yin, H.; Guo, L. Varying Amplitude Vibration Phase Suppression Algorithm in ISAL Imaging. Remote Sens. 2022, 14, 1122. [Google Scholar] [CrossRef]
- Stankovic, L.; Dakovic, M.; Thayaparan, T.; Popovic-Bugarin, V. Inverse Radon Transform-Based Micro-Doppler Analysis from a Reduced Set of Observations. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1155–1169. [Google Scholar] [CrossRef]
- Liang, Y.; Li, G. A Nonparametric Paired Echo Suppression Method for Helicopter-Borne SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2080–2084. [Google Scholar] [CrossRef]
- Yin, H. On Space-Based Inverse Synthetic Aperture Lidar Imaging Algorithm. Ph.D. Thesis, Xi’an University of Electronic Science and Technology, Xi’an, China, 2022. [Google Scholar]
Parameter Symbols | Parameter Definition | Parameter Value |
---|---|---|
fc | Central Frequency | 35.5 GHz |
Br | Signal Bandwidth | 1000 MHz |
Tr | Sweep Time | 0.1 ms |
H | Platform height | 1000 m |
Rarc | Arc Array Radius | 0.6 m |
θa | Array Beamwidth (−3 dB) | 70° |
Target | Range | Azimuth | ||
---|---|---|---|---|
Resolution (m) | PSLR (dB) | Resolution (°) | PSLR (dB) | |
0.616 | −13.58 | 1.354 | −12.54 | |
0.621 | −13.34 | 1.057 | −13.43 | |
0.561 | −13.31 | 1.404 | −13.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Huang, P.; Xu, W.; Tan, W.; Gao, Z.; Qi, Y. An Airborne Arc Array Synthetic Aperture Radar Vibration Error Compensation Method. Sensors 2024, 24, 1013. https://doi.org/10.3390/s24031013
Xiao M, Huang P, Xu W, Tan W, Gao Z, Qi Y. An Airborne Arc Array Synthetic Aperture Radar Vibration Error Compensation Method. Sensors. 2024; 24(3):1013. https://doi.org/10.3390/s24031013
Chicago/Turabian StyleXiao, Mengxue, Pingping Huang, Wei Xu, Weixian Tan, Zhiqi Gao, and Yaolong Qi. 2024. "An Airborne Arc Array Synthetic Aperture Radar Vibration Error Compensation Method" Sensors 24, no. 3: 1013. https://doi.org/10.3390/s24031013
APA StyleXiao, M., Huang, P., Xu, W., Tan, W., Gao, Z., & Qi, Y. (2024). An Airborne Arc Array Synthetic Aperture Radar Vibration Error Compensation Method. Sensors, 24(3), 1013. https://doi.org/10.3390/s24031013