Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System
Abstract
:1. Introduction
2. Architecture of Monitoring System for Miner’s Status
3. Realization Methods and Results
3.1. Vital Signs Collection and Synchronization
3.2. Multi-Gas Detection and Personnel Positioning
3.3. Base Station Deployment and Networking
3.4. Fatigue Level Estimation
3.5. Data Management and Emergency Response
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tubis, A.; Werbińska-Wojciechowska, S.; Wroblewski, A. Risk Assessment Methods in Mining Industry—A Systematic Review. Appl. Sci. 2020, 10, 5172. [Google Scholar] [CrossRef]
- We Need To Talk about Mining: Death, Dangers & Prevention. Available online: https://www.howden.com/en-us/articles/mining/we-need-to-talk-about-mining (accessed on 10 December 2023).
- Stewart, A.G. Mining Is Bad for Health: A Voyage of Discovery. Environ. Geochem. Health 2020, 42, 1153–1165. [Google Scholar] [CrossRef]
- Vital Signs (Body Temperature, Pulse Rate, Respiration Rate, Blood Pressure). Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/vital-signs-body-temperature-pulse-rate-respiration-rate-blood-pressure (accessed on 10 December 2023).
- Ranjan, A.; Zhao, Y.; Sahu, H.B.; Misra, P. Opportunities And Challenges In Health Sensing for Extreme Industrial Environment: Perspectives from Underground Mines. IEEE Access 2019, 7, 139181–139195. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, J.; Zhang, R.; Chen, W.; Li, B. Distributed Cooperative Wireless Charging for The Mine Internet of Things. IEEE Access 2019, 7, 81000–81009. [Google Scholar] [CrossRef]
- Jamil, F.; Ahmad, S.; Iqbal, N.; Kim, D.-H. Towards a Remote Monitoring of Patient Vital Signs Based on Iot-Based Blockchain Integrity Management Platforms in Smart Hospitals. Sensors 2020, 20, 2195. [Google Scholar] [CrossRef]
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, And Productivity. Adv. Intell. Syst. 2022, 4, 2100099. [Google Scholar] [CrossRef]
- Mardonova, M.; Choi, Y. Review of Wearable Device Technology and Its Applications to The Mining Industry. Energies 2018, 11, 547. [Google Scholar] [CrossRef]
- Butlewski, M.; Dahlke, G.; Drzewiecka, M.; Pacholski, L. Fatigue of Miners As a Key Factor In The Work Safety System. Procedia Manuf. 2015, 3, 4732–4739. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Mir, M.; Hussain, S.; Tayarani Darbandy, M.; Khosravi, A.; Nahavandi, S.; Aisbett, B. Physical Fatigue Detection Using Entropy Analysis of Heart Rate Signals. Sustainability 2020, 12, 2714. [Google Scholar] [CrossRef]
- Dawson, D.; Noy, Y.I.; Härmä, M.; Åkerstedt, T.; Belenky, G. Modelling Fatigue and The Use of Fatigue Models in Work Settings. Accid. Anal. Prev. 2011, 43, 549–564. [Google Scholar] [CrossRef]
- Dong, H.; Ugalde, I.; Figueroa, N.; El Saddik, A. Towards Whole Body Fatigue Assessment of Human Movement: A Fatigue-Tracking System Based on Combined Semg and Accelerometer Signals. Sensors 2014, 14, 2052–2070. [Google Scholar] [CrossRef]
- Dong, M.; Zheng, C.; Miao, S.; Zhang, Y.; Du, Q.; Wang, Y.; Tittel, F.K. Development and Measurements of a Mid-Infrared Multi-Gas Sensor System for CO, CO2 and CH4 Detection. Sensors 2017, 17, 2221. [Google Scholar] [CrossRef]
- Xiao, H.; Zhao, J.; Sima, C.; Lu, P.; Long, Y.; Ai, Y.; Zhang, W.; Pan, Y.; Zhang, J.; Liu, D. Ultra-Sensitive Ppb-Level Methane Detection Based on NIR All-Optical Photoacoustic Spectroscopy by Using Differential Fiber-Optic Microphones with Gold-Chromium Composite Nanomembrane. Photoacoustics 2022, 26, 100353. [Google Scholar] [CrossRef]
- Wang, L.; Nie, B.; Zhang, R.; Zhai, S.; Li, H. Zigbee-Based Positioning System for Coal Miners. Procedia Eng. 2011, 26, 2406–2414. [Google Scholar] [CrossRef]
- Miner Tracking: Tag Solutions in Real-World Scenarios. Available online: https://www.identecsolutions.com/news/miner-tracking-tag-solutions-in-real-world-scenarios (accessed on 10 December 2023).
- Huo, Y.; Zhao, L.; Hu, Q.; Ding, E.; Zhao, X.; Sun, Z. Optimal Deployment of Antenna for Field Coverage in Coal Mine Tunnels. IEEE Access 2020, 8, 51954–51963. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, W.; Fang, W.; Jiang, Y.; Zhao, Q. Periodic Monitoring and Filtering Suppression of Signal Interference in Mine 5G Communication. Appl. Sci. 2022, 12, 7689. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Wang, K.; Fu, G. A Dynamic Information Platform for Underground Coal Mine Safety Based on Internet of Things. Saf. Sci. 2019, 113, 9–18. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, F.; Gao, B.; Zhao, D.; Ding, E. Design of Intelligent Miner Lamp Based on Embedded Real-Time Operating System. J. Mine Autom. 2018, 44, 23–27. [Google Scholar] [CrossRef]
- Das, S.; Pal, M. Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J. Electrochem. Soc. 2020, 167, 037562. [Google Scholar] [CrossRef]
- Zhou, C.; Reyes, M.; Girman, M. Electromagnetic Interference (EMI) in Underground Coal Mines: A Literature Review And Practical Considerations. Mining Metall. Explor. 2022, 39, 421–431. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, L. A Wearable Blood Oxygen Saturation Monitoring System Based on Bluetooth Low Energy Technology. Comput. Commun. 2020, 160, 101–110. [Google Scholar] [CrossRef]
- Toffaletti, J.G.; Rackley, C.R. Chapter Three—Monitoring Oxygen Status. Adv. Clin. Chem. 2016, 77, 103–124. [Google Scholar] [CrossRef]
- Whatmore, R.W.; Ward, S.J. Pyroelectric Infrared Detectors and Materials—A Critical Perspective. J. Appl. Phys. 2023, 133, 080902. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past And Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Nachman, D.; Gepner, Y.; Goldstein, N.; Kabakov, E.; Ishay, A.B.; Littman, R.; Azmon, Y.; Jaffe, E.; Eisenkraft, A. Comparing Blood Pressure Measurements Between a Photoplethysmography-Based and a Standard Cuff-Based Manometry Device. Sci. Rep. 2020, 10, 16116. [Google Scholar] [CrossRef]
- Introducing: The Bluetooth Low Energy Primer. Available online: https://www.bluetooth.com/blog/introducing-the-bluetooth-low-energy-primer (accessed on 10 December 2023).
- How Bluetooth Technology Uses Adaptive Frequency Hopping to Overcome Packet Interference. Available online: https://www.bluetooth.com/blog/how-bluetooth-technology-uses-adaptive-frequency-hopping-to-overcome-packet-interference (accessed on 10 December 2023).
- Tian, S.; Liu, Z.; Yang, Q.; Xu, N.; Li, X.; Wang, D.; Liu, R.; Lü, W. Photothermal-Conversion-Enhanced LiMn2O4 Pouch Cell Performance for Low-Temperature Resistance: A Theoretical Study. Batteries 2023, 9, 366. [Google Scholar] [CrossRef]
- Tong, C.; Sima, C.; Chen, M.; Zhang, X.; Li, T.; Ai, Y.; Lu, P. Laser Linewidth Analysis and Filtering/Fitting Algorithms for Improved TDLAS-Based Optical Gas Sensor. Sensors 2023, 23, 5130. [Google Scholar] [CrossRef]
- Sepman, A.; Gren, Y.; Qu, Z.; Wiinikka, H.; Schmidt, F.M. Real-time in Situ Multi-Parameter TDLAS Sensing in the Reactor Core of an Entrained-Flow Biomass Gasifier. Proc. Combust. Inst. 2016, 36, 4541–4548. [Google Scholar] [CrossRef]
- Alonge, F.; Cusumano, P.; D’Ippolito, F.; Garraffa, G.; Livreri, P.; Sferlazza, A. Localization in Structured Environments with UWB Devices without Acceleration Measurements and Velocity Estimation Using a Kalman–Bucy Filter. Sensors 2022, 22, 6308. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; You, S.; Tang, C. UWB-Based Localization System Aided with Inertial Sensor for Underground Coal Mine Applications. IEEE Sens. J. 2020, 20, 6652–6669. [Google Scholar] [CrossRef]
- Chen, W. Personnel Precise Positioning System of Coal Mine Underground Based on UWB. J. Phys. Conf. Ser. 2021, 1920, 012115. [Google Scholar] [CrossRef]
- Underground Coal Mine 5G Coverage. Available online: https://www.thefo.com/blog/underground-coal-mine-5g-coverage.html (accessed on 10 December 2023).
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Haghrah, A.; Abdollahi, M.P.; Azarhava, H.; Niya, J.M. A Survey on the Handover Management in 5G-NR Cellular Networks: Aspects, Approaches and Challenges. J. Wirel. Com. Netw. 2023, 2023, 52. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive with MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. 2020, 19, 77–90. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Y.; Sharif, H. Distributed MIMO Technologies in Cooperative Wireless Networks. IEEE Commun. Mag. 2011, 49, 78–82. [Google Scholar] [CrossRef]
- Wan, J.; Qin, Z.; Wang, P.; Sun, Y.; Liu, X. Muscle Fatigue: General Understanding and Treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef]
- Westerblad, H.; Allen, D.G.; Lannergren, J. Muscle Fatigue: Lactic Acid or Inorganic Phosphate the Major Cause? News Physiol. Sci. 2002, 17, 17–21. [Google Scholar] [CrossRef]
- Boroumand, M.; Olianas, A.; Cabras, T.; Manconi, B.; Fanni, D.; Faa, G.; Desiderio, C.; Messana, I.; Castagnola, M. Saliva, a Bodily Fluid with Recognized and Potential Diagnostic Applications. J. Sep. Sci. 2021, 44, 3677–3690. [Google Scholar] [CrossRef]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary PH: A Diagnostic Biomarker. J. Indian. Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef]
- Clini de Souza, A.; Lanteri, S.; Hernández-Figueroa, H.E.; Abbarchi, M.; Grosso, D.; Kerzabi, B.; Mahmoud Elsawy, M. Back-Propagation Optimization and Multi-Valued Artificial Neural Networks for Highly Vivid Structural Color Filter Metasurfaces. Sci. Rep. 2023, 13, 21352. [Google Scholar] [CrossRef]
Items | Parameters |
---|---|
Underground miner | - Three shifts per day, with a maximum of 400 miners per shift |
Electronic bracelet | - Collection of vital signs: respiration, body temperature, pulse rate, blood pressure |
- Data synchronization: Bluetooth | |
Miner lamp | - Wireless communication: 5G, Wi-Fi |
- Gas detection: methane, oxygen, carbon monoxide | |
- Personnel positioning: UWB | |
Base station | - 5G: Upload ≥ 450 Mbps, delay ≤ 20 ms |
- UWB: error ≤ 30 cm | |
Monitoring platform | - Assessment: health and safety |
- Estimation: fatigue level | |
- Maximum concurrent number: up to 5000 users |
Test Time | Electronic Bracelet | Sphygmomanometer | ||
---|---|---|---|---|
Systolic | Diastolic | Systolic | Diastolic | |
8:00 | 126 mmHg | 83 mmHg | 125 mmHg | 84 mmHg |
10:00 | 132 mmHg | 87 mmHg | 129 mmHg | 85 mmHg |
12:00 | 135 mmHg | 88 mmHg | 133 mmHg | 86 mmHg |
14:00 | 128 mmHg | 83 mmHg | 128 mmHg | 82 mmHg |
16:00 | 122 mmHg | 82 mmHg | 120 mmHg | 81 mmHg |
Absolute Distance | ||||
---|---|---|---|---|
1.00 m | 125.00 m | 250.00 m | 400.00 m | |
Test 1 | 1.09 m | 125.03 m | 250.05 m | 400.07 m |
Test 2 | 1.07 m | 125.02 m | 250.05 m | 400.04 m |
Test 3 | 1.12 m | 125.03 m | 250.12 m | 399.99 m |
Test 4 | 1.17 m | 125.04 m | 250.06 m | 400.06 m |
Test 5 | 1.12 m | 125.02 m | 250.10 m | 400.07 m |
Test 6 | 1.12 m | 125.05 m | 250.09 m | 400.12 m |
Test 7 | 1.04 m | 124.98 m | 250.11 m | 400.03 m |
Test 8 | 1.06 m | 125.10 m | 250.02 m | 400.07 m |
Test 9 | 1.16 m | 125.00 m | 250.05 m | 400.05 m |
Test 10 | 1.11 m | 124.99 m | 250.11 m | 400.07 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chen, W.; Zhang, X.; Zhang, X.; Yang, G. Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System. Sensors 2024, 24, 739. https://doi.org/10.3390/s24030739
Jiang Y, Chen W, Zhang X, Zhang X, Yang G. Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System. Sensors. 2024; 24(3):739. https://doi.org/10.3390/s24030739
Chicago/Turabian StyleJiang, Yufeng, Wei Chen, Xue Zhang, Xuejun Zhang, and Guowei Yang. 2024. "Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System" Sensors 24, no. 3: 739. https://doi.org/10.3390/s24030739
APA StyleJiang, Y., Chen, W., Zhang, X., Zhang, X., & Yang, G. (2024). Real-Time Monitoring of Underground Miners’ Status Based on Mine IoT System. Sensors, 24(3), 739. https://doi.org/10.3390/s24030739