Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participant Demographics
3.2. Between-Group Differences
3.3. Classification of pwMS0–4
3.4. Classification of pwMS0–2
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comber, L.; Sosnoff, J.J.; Galvin, R.; Coote, S. Postural control deficits in people with Multiple Sclerosis: A systematic review and meta-analysis. Gait Posture 2018, 61, 445–452. [Google Scholar] [CrossRef]
- Cinar, B.P.; Yorgun, Y.G. What We Learned from The History of Multiple Sclerosis Measurement: Expanded Disability Status Scale. Noro Psikiyatr. Arsivi 2018, 55, S69–S75. [Google Scholar] [CrossRef]
- Expanded Disability Status Scale (EDSS). Available online: https://mstrust.org.uk/a-z/expanded-disability-status-scale-edss (accessed on 26 October 2023).
- Ayan, H.; Ertekin, Ö.; Kahraman, T.; Özakbaş, S. Balance and Gait Impairment in Persons with Multiple Sclerosis with the Absence of Clinical Disability. Turk. J. Neurol. Turk Noroloji Derg. 2020, 26, 224–229. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable inertial sensors to assess standing balance: A systematic review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Sun, R.; Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A.; Ghaffari, R.; Patel, S.; Sosnoff, J.J. Assessment of Postural Sway in Individuals with Multiple Sclerosis Using a Novel Wearable Inertial Sensor. Digit. Biomark. 2018, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kedziorek, J.; Blazkiewicz, M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy 2020, 22, 1357. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.J.; Jacobs, J.V.; Lomond, K.V.; Henry, S.M. Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: A case-control study. J. Neuroeng. Rehabil. 2015, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Spain, R.I.; St George, R.J.; Salarian, A.; Mancini, M.; Wagner, J.M.; Horak, F.B.; Bourdette, D. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture 2012, 35, 573–578. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Hernández, M.; Olaya-Mira, N.; Viloria-Barragán, C.; Henao-Pérez, J.; Rojas-Mora, J.M.; Díaz-Londoño, G. Assessing Muscle Fatigue in Multiple Sclerosis using the Sample Entropy of Electromyographic Signals: A Proof of Concept. J. Med. Signals Sens. 2023, 13, 153–159. [Google Scholar] [CrossRef]
- Sun, R.; Hsieh, K.L.; Sosnoff, J.J. Fall risk prediction in multiple sclerosis using postural sway measures: A machine learning approach. Sci. Rep. 2019, 9, 16154. [Google Scholar] [CrossRef]
- Carpinella, I.; Anastasi, D.; Gervasoni, E.; Di Giovanni, R.; Tacchino, A.; Brichetto, G.; Confalonieri, P.; Rovaris, M.; Solaro, C.; Ferrarin, M.; et al. Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice. Sensors 2022, 22, 9558. [Google Scholar] [CrossRef]
- Roeing, K.L.; Wajda, D.A.; Sosnoff, J.J. Time dependent structure of postural sway in individuals with multiple sclerosis. Gait Posture 2016, 48, 19–23. [Google Scholar] [CrossRef]
- Raffalt, P.C.; Spedden, M.E.; Geertsen, S.S. Dynamics of postural control during bilateral stance—Effect of support area, visual input and age. Hum. Mov. Sci. 2019, 67, 102462. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sepehri, N.; Wu, C.; Szturm, T. Sample Entropy of Human Gait Center of Pressure Displacement: A Systematic Methodological Analysis. Entropy 2018, 20, 579. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Kalincik, T.; Butzkueven, H. The MSBase registry: Informing clinical practice. Mult. Scler. 2019, 25, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.W.; Richmond, S.B.; Sharp, B.E.; Fling, B.W. Middle-age people with multiple sclerosis demonstrate similar mobility characteristics to neurotypical older adults. Mult. Scler. Relat. Disord. 2021, 51, 102924. [Google Scholar] [CrossRef]
- Huisinga, J.M.; Yentes, J.M.; Filipi, M.L.; Stergiou, N. Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 2012, 524, 124–128. [Google Scholar] [CrossRef] [PubMed]
- McCamley, J.D.; Denton, W.; Arnold, A.; Raffalt, P.C.; Yentes, J.M. On the Calculation of Sample Entropy Using Continuous and Discrete Human Gait Data. Entropy 2018, 20, 764. [Google Scholar] [CrossRef]
- Fischer, O.M.; Missen, K.J.; Tokuno, C.D.; Carpenter, M.G.; Adkin, A.L. Postural threat increases sample entropy of postural control. Front. Neurol. 2023, 14, 1179237. [Google Scholar] [CrossRef] [PubMed]
- Donker, S.F.; Roerdink, M.; Greven, A.J.; Beek, P.J. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp. Brain Res. 2007, 181, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, N.; Lee, Y.-J.; Aruin, A.S. Frequency analysis approach to study balance control in individuals with multiple sclerosis. J. Neurosci. Methods 2014, 222, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Borg, F.G.; Laxåback, G. Entropy of balance—Some recent results. J. NeuroEng. Rehabil. 2010, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Cofre Lizama, L.E.; Bastani, A.; van der Walt, A.; Kilpatrick, T.; Khan, F.; Galea, M.P. Increased ankle muscle coactivation in the early stages of multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2020, 6, 2055217320905870. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.P.; Cofre Lizama, L.E.; Butzkueven, H.; Kilpatrick, T.J. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0. NeuroRehabilitation 2017, 40, 277–284. [Google Scholar] [CrossRef]
- Strik, M.; Cofré Lizama, L.E.; Shanahan, C.J.; van der Walt, A.; Boonstra, F.M.C.; Glarin, R.; Kilpatrick, T.J.; Geurts, J.J.G.; Cleary, J.O.; Schoonheim, M.M.; et al. Axonal loss in major sensorimotor tracts is associated with impaired motor performance in minimally disabled multiple sclerosis patients. Brain Commun. 2021, 3, fcab032. [Google Scholar] [CrossRef]
- Chamard Witkowski, L.; Mallet, M.; Bélanger, M.; Marrero, A.; Handrigan, G. Cognitive-Postural Interference in Multiple Sclerosis. Front. Neurol. 2019, 10, 913. [Google Scholar] [CrossRef]
- Jones, S.L.; van Emmerik, R.E.A. Impaired foot vibration sensitivity is related to altered plantar pressures during walking in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 75, 104767. [Google Scholar] [CrossRef]
- Monaghan, A.S.; Huisinga, J.M.; Peterson, D.S. The relationship between plantar sensation and muscle onset during automatic postural responses in people with multiple sclerosis and healthy controls. Mult. Scler. Relat. Disord. 2021, 56, 103313. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, C.J.; Boonstra, F.M.C.; Cofre Lizama, L.E.; Strik, M.; Moffat, B.A.; Khan, F.; Kilpatrick, T.J.; van der Walt, A.; Galea, M.P.; Kolbe, S.C. Technologies for Advanced Gait and Balance Assessments in People with Multiple Sclerosis. Front. Neurol. 2017, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Yentes, J.M.; Raffalt, P.C. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann. Biomed. Eng. 2021, 49, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Optimizing footwear for older people at risk of falls. J. Rehabil. Res. Dev. 2008, 45, 1167–1182. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Socie, M.J.; Boes, M.K.; Sandroff, B.M.; Pula, J.H.; Suh, Y.; Weikert, M.; Balantrapu, S.; Morrison, S.; Motl, R.W. Mobility, balance and falls in persons with multiple sclerosis. PLoS ONE 2011, 6, e28021. [Google Scholar] [CrossRef]
Variable | HC | PwMS (EDSS 0–4.0) | PwMS (EDSS 0–2) |
---|---|---|---|
n | 23 | 58 | 37 |
EDSS (median) | - | 2.0 | 1.0 |
Years since diagnosis (mean ± SD) | - | 6.0 ± 3.7 | 4.9 ± 3.2 |
Age (mean ± SD) | 43.7 ± 12.0 | 42.9 ± 11.1 | 40.8 ± 10.7 |
Sex (male/female) | 7/16 | 19/39 | 13/35 |
Height (cm) (mean ± SD) | 172.0 ± 10.4 | 170.9 ± 9.6 | 172.1 ± 9.7 |
Weight (kg) (mean ± SD) | 73.1 ± 14.0 | 81.3 ± 16.4 | 79.7 ± 16.5 |
Body mass index (kg/m2) (mean ± SD) | 24.9 ± 4.6 | 27.8 ± 4.9 | 27.3 ± 5.1 |
HC | pwMS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metric | Eyes | Surface | Direction | Sensor | Mean | Sd | Mean | Sd | p | η2 | AUC |
SE | EO | H | ML | Lumbar | 1.294 | 0.218 | 1.234 | 0.273 | 0.352 | 0.011 | 0.442 |
SE | EO | H | AP | Lumbar | 1.539 | 0.176 | 1.545 | 0.278 | 0.932 | 0.000 | 0.542 |
SE | EO | H | ML | Sternum | 0.737 | 0.208 | 0.902 | 0.300 | 0.018 | 0.069 | 0.648 |
SE | EO | H | AP | Sternum | 1.349 | 0.238 | 1.415 | 0.236 | 0.262 | 0.016 | 0.577 |
SE | EC | H | ML | Lumbar | 1.049 | 0.214 | 1.149 | 0.306 | 0.156 | 0.025 | 0.624 |
SE | EC | H | AP | Lumbar | 1.183 | 0.230 | 1.431 | 0.302 | 0.001 | 0.138 | 0.783 |
SE | EC | H | ML | Sternum | 0.795 | 0.197 | 0.848 | 0.291 | 0.419 | 0.008 | 0.529 |
SE | EC | H | AP | Sternum | 1.178 | 0.193 | 1.370 | 0.270 | 0.003 | 0.109 | 0.736 |
SE | EO | F | ML | Lumbar | 1.222 | 0.311 | 0.949 | 0.288 | <0.001 | 0.152 | 0.276 |
SE | EO | F | AP | Lumbar | 1.534 | 0.193 | 1.070 | 0.298 | <0.001 | 0.376 | 0.099 |
SE | EO | F | ML | Sternum | 0.754 | 0.257 | 0.820 | 0.206 | 0.227 | 0.018 | 0.577 |
SE | EO | F | AP | Sternum | 1.371 | 0.198 | 1.086 | 0.249 | <0.001 | 0.234 | 0.190 |
SE | EC | F | ML | Lumbar | 0.815 | 0.193 | 0.647 | 0.200 | 0.001 | 0.131 | 0.266 |
SE | EC | F | AP | Lumbar | 0.924 | 0.225 | 0.702 | 0.233 | <0.001 | 0.162 | 0.234 |
SE | EC | F | ML | Sternum | 0.709 | 0.168 | 0.629 | 0.181 | 0.072 | 0.040 | 0.361 |
SE | EC | F | AP | Sternum | 0.943 | 0.193 | 0.760 | 0.247 | 0.002 | 0.113 | 0.274 |
Range | EO | F | ML | Lumbar | 0.261 | 0.123 | 0.313 | 0.162 | 0.171 | 0.024 | 0.616 |
Jerk | EC | H | ML | Lumbar | 2.602 | 3.347 | 3.292 | 5.644 | 0.585 | 0.004 | 0.501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cofré Lizama, L.E.; He, X.; Kalincik, T.; Galea, M.P.; Panisset, M.G. Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis. Sensors 2024, 24, 872. https://doi.org/10.3390/s24030872
Cofré Lizama LE, He X, Kalincik T, Galea MP, Panisset MG. Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis. Sensors. 2024; 24(3):872. https://doi.org/10.3390/s24030872
Chicago/Turabian StyleCofré Lizama, L. Eduardo, Xiangyu He, Tomas Kalincik, Mary P. Galea, and Maya G. Panisset. 2024. "Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis" Sensors 24, no. 3: 872. https://doi.org/10.3390/s24030872
APA StyleCofré Lizama, L. E., He, X., Kalincik, T., Galea, M. P., & Panisset, M. G. (2024). Sample Entropy Improves Assessment of Postural Control in Early-Stage Multiple Sclerosis. Sensors, 24(3), 872. https://doi.org/10.3390/s24030872