On-Demand Centralized Resource Allocation for IoT Applications: AI-Enabled Benchmark
Abstract
:1. Introduction
- This paper is the first to provide a benchmark for the performance prediction of the multi-queue GPS scheduling in terms of different network flow characteristics. The benchmark makes it possible to compare different performance prediction methods under a consistent experimental environment and comparison metrics.
- The benchmark first combines traffic with different characteristics (i.e., LRD traffic and SRD traffic) to design five traffic datasets to involve traffic heterogeneity. Then, a unified dataset format and unified evaluation metrics are designed for fair comparison of the performance prediction of the GPS.
- This paper concludes the best-fit method considering different network flow characteristics and server loads.
- This paper further performs complex experimental analysis at both the feature level and method levels under different traffic flows. The experimental analysis shows that the combination of knowledge-driven information and machine learning technology contributes significantly to the performance prediction of the GPS.
2. Related Works
2.1. Traditional Machine Learning-Based Methods
2.2. Deep Learning-Based Methods
2.3. Approximate Analytical Methods
3. Motivations
3.1. Application Scene
3.2. Motivations for Performance Benchmarking
- To find out bottlenecks and gaps for improvement and whether the server capacity should be improved for the sake of the fairness objective.
- To provide fairness guidelines on the parameter configuration weights assigned to each flow network flow control.
- To propose and implement optimizations to improve performance.
4. Benchmark System Design
4.1. Problem Statement
4.2. Dataset Preparation
4.2.1. Label Generation
- Dataset Lower burst flow: Each flow obeys the self-similar process, and the Hurst parameter of each flow is set as ;
- Dataset Higher burst flow: Each flow obeys the self-similar process, and the Hurst parameter of each flow is set as ;
- Dataset Hybrid burst flows: Each flow obeys the self-similar process, and each flow is set with different Hurst parameters.
- Dataset Non-burst (SRD) flow: Each flow in the multi-queue GPS that has arrived obeys the Poisson process.
- Dataset Heterogeneous flows: Some flows have arrived obeying the Poisson, and others obey the self-similar process.
4.2.2. Feature Extraction and Processing
4.3. Performance Prediction of the Multi-Queue GPS System in the Benchnmark
4.3.1. Traditional Machine Learning Method
4.3.2. Deep Learning Method without Knowledge-Driven Information
4.3.3. Knowledge-Driven Deep Learning Method
4.3.4. Analytical Approximate Methods
4.4. Evaluation Metrics
5. Experiments
5.1. Experiment Settings
5.2. Experiment Results and Analysis
5.2.1. The Effect of Performance Prediction Methods under Different Server Loads
5.2.2. The Comparison of the Methods with and without Knowledge-Driven Information
5.2.3. The Comparison of the Learning-Based Methods and the Approximate Analytical Methods
6. Discussions and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shuja, J.; Humayun, M.A.; Alasmary, W.; Sinky, H.; Alanazi, E.; Khan, M.K. Resource Efficient Geo-Textual Hierarchical Clustering Framework for Social IoT Applications. IEEE Sensors J. 2021, 21, 25114–25122. [Google Scholar] [CrossRef]
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G internet of things: Recent advances, use cases, and open challenges. ICT Express 2023, 9, 296–312. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Liu, J.; Kato, N. Optimal Edge Resource Allocation in IoT-Based Smart Cities. IEEE Netw. 2019, 33, 30–35. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, X.B.; Lu, W.; Wu, C. QoS-guarantee resource allocation for multibeam satellite industrial internet of things with NOMA. IEEE Trans. Ind. Inform. 2019, 17, 2052–2061. [Google Scholar] [CrossRef]
- Xu, Y.; Gui, G.; Gacanin, H.; Adachi, F. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Commun. Surv. Tutorials 2021, 23, 668–695. [Google Scholar] [CrossRef]
- Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in federated learning. arXiv 2019, arXiv:1905.10497. [Google Scholar]
- Gu, L.; Zeng, D.; Tao, S.; Guo, S.; Jin, H.; Zomaya, A.Y.; Zhuang, W. Fairness-Aware Dynamic Rate Control and Flow Scheduling for Network Utility Maximization in Network Service Chain. IEEE J. Sel. Areas Commun. 2019, 37, 1059–1071. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J. Flow Scheduling of Service Chain Processing in a NFV-Based Network. IEEE Trans. Netw. Sci. Eng. 2021, 8, 389–399. [Google Scholar] [CrossRef]
- Mannersalo, P.; Norros, I. GPS schedulers and Gaussian traffic. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), New York, NY, USA, 23–27 June 2002. [Google Scholar]
- Mannersalo, P.; Norros, I. A most probable path approach to queueing systems with general Gaussian input. Comput. Netw. 2002, 40, 399–412. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Lu, X.; Yan, Z.; Li, H. Performance Modeling of a General GPS Scheduling Under Long Range Dependent Traffic. In Proceedings of the ISPA/BDCloud/SocialCom/SustainCom 2020, Exeter, UK, 17–19 December 2020; pp. 683–689. [Google Scholar]
- Zhang, R.; Liu, N.; Liu, L.; Zhang, W.; Yuan, H.; Dong, M.; Cui, L. Is it fair? Resource allocation for differentiated services on demands. In Proceedings of the 2022 IEEE International Conference on Web Services (ICWS), Barcelona, Spain, 10–16 July 2022; pp. 355–360. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Bell, J. What is machine learning? In Machine Learning and the City: Applications in Architecture and Urban Design; Wiley: Hoboken, NJ, USA, 2022; pp. 207–216. [Google Scholar]
- Samanta, R.K.; Sadhukhan, B.; Samaddar, H.; Sarkar, S.; Koner, C.; Ghosh, M. Scope of machine learning applications for addressing the challenges in next-generation wireless networks. CAAI Trans. Intell. Technol. 2022, 7, 395–418. [Google Scholar] [CrossRef]
- Ahmad, A.Y.B.; William, P.; Uike, D.; Murgai, A.; Bajaj, K.; Deepak, A.; Shrivastava, A. Framework for Sustainable Energy Management using Smart Grid Panels Integrated with Machine Learning and IOT based Approach. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 581–590. [Google Scholar]
- Chauhan, N.; Choudhary, N.; George, K. A comparison of reinforcement learning based approaches to appliance scheduling. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 253–258. [Google Scholar] [CrossRef]
- Chinchali, S.; Hu, P.; Chu, T.; Sharma, M.; Bansal, M.; Misra, R.; Pavone, M.; Katti, S. Cellular network traffic scheduling with deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Rjoub, G.; Bentahar, J. Cloud task scheduling based on swarm intelligence and machine learning. In Proceedings of the 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague, Czech Republic, 21–23 August 2017; pp. 272–279. [Google Scholar]
- Qiao, M.; Ma, Y.; Bian, Y.; Liu, J. Real-time multi-application network traffic identification based on machine learning. In Proceedings of the Advances in Neural Networks–ISNN 2015: 12th International Symposium on Neural Networks, ISNN 2015, Jeju, Republic of Korea, 15–18 October 2015; pp. 473–480. [Google Scholar]
- Perera, P.; Tian, Y.C.; Fidge, C.; Kelly, W. A comparison of supervised machine learning algorithms for classification of communications network traffic. In Proceedings of the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; pp. 445–454. [Google Scholar]
- Sharifani, K.; Amini, M. Machine Learning and Deep Learning: A Review of Methods and Applications. World Inf. Technol. Eng. J. 2023, 10, 3897–3904. [Google Scholar]
- Vashishth, T.K.; Sharma, V.; Sharma, K.K.; Kumar, B.; Chaudhary, S.; Panwar, R. Intelligent Resource Allocation and Optimization for Industrial Robotics Using AI and Blockchain. In AI and Blockchain Applications in Industrial Robotics; IGI Global: Hershey, PA, USA, 2024; pp. 82–110. [Google Scholar]
- Saravanan, V.; Sreelatha, P.; Atyam, N.R.; Madiajagan, M.; Saravanan, D.; Sultana, H.P.; Kumar, T.A. Design of deep learning model for radio resource allocation in 5G for massive iot device. Sustain. Energy Technol. Assessments 2023, 56, 103054. [Google Scholar] [CrossRef]
- Meng, J.; Li, Y.; Liang, H.; Ma, Y. Single-image dehazing based on two-stream convolutional neural network. J. Artif. Intell. Technol. 2022, 2, 100–110. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, J.; Liang, Y.C.; Feng, G.; Niyato, D. Deep Reinforcement Learning-Based Modulation and Coding Scheme Selection in Cognitive Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2019, 18, 3281–3294. [Google Scholar] [CrossRef]
- Zhou, T.; Han, G.; Xu, X.; Han, C.; Huang, Y.; Qin, J. A learning-based multimodel integrated framework for dynamic traffic flow forecasting. Neural Process. Lett. 2019, 49, 407–430. [Google Scholar] [CrossRef]
- Chun, C.J.; Jeong, C. Data-Driven Resource Allocation for Deep Learning in IoT Networks. IEEE Internet Things J. 2024, 11, 2082–2096. [Google Scholar] [CrossRef]
- ElHalawany, B.M.; Wu, K.; Zaky, A.B. Deep learning based resources allocation for internet-of-things deployment underlaying cellular networks. Mob. Netw. Appl. 2020, 25, 1833–1841. [Google Scholar] [CrossRef]
- Zhang, Z.L. Large deviations and the generalized processor sharing scheduling for a multiple-queue system. Queueing Syst. 1998, 28, 349–376. [Google Scholar] [CrossRef]
- Zhang, Z.L. Large Deviations and the Generalized Processor Sharing Scheduling: Upper and Lower Bounds Part I: Two-Queue Systems. In Computer Science Department Faculty Publication Series; University of Massachusetts Amherst: Amherst, MA, USA, 1995; p. 81. [Google Scholar]
- Bertsimas, D.; Paschalidis, I.C.; Tsitsiklis, J.N. Large deviations analysis of the generalized processor sharing policy. Queueing Syst. 1999, 32, 319–349. [Google Scholar] [CrossRef]
- Jin, X.; Min, G. Performance modelling of hybrid PQ-GPS systems under long-range dependent network traffic. IEEE Commun. Lett. 2007, 11, 446–448. [Google Scholar] [CrossRef]
- Ashour, M.; Le-Ngoc, T. Priority queuing of long-range dependent traffic. In Proceedings of the GLOBECOM’03, IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489), San Francisco, CA, USA, 1–5 December 2003; Volume 6, pp. 3025–3029. [Google Scholar]
- Ashour, M.; Le-Ngoc, T. Multi-scale analysis of generalised processor sharing queues with long-range-dependent traffic inputs and variable service rates. IET Commun. 2009, 3, 992–1004. [Google Scholar] [CrossRef]
- Parekh, A.; Gallager, R. A generalized processor sharing approach to flow control in integrated services networks: The single-node case. IEEE/ACM TON 1993, 1, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, B. Survey of Network Traffic Models; Waschington University: St. Louis, MO, USA, 2009; Volume 67. [Google Scholar]
- Cao, J.; Cleveland, W.S.; Lin, D.; Sun, D.X. Internet traffic tends toward Poisson and independent as the load increases. In Nonlinear Estimation and Classification; Springer: Berlin/Heidelberg, Germany, 2003; pp. 83–109. [Google Scholar]
- Crovella, M.; Bestavros, A. Self-similarity in World Wide Web traffic: Evidence and possible causes. IEEE/ACM Trans. Netw. 1997, 5, 835–846. [Google Scholar] [CrossRef]
- Liu, S.G.; Wang, P.J.; Qu, L.J. Modeling and simulation of self-similar data traffic. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 7, pp. 3921–3925. [Google Scholar] [CrossRef]
- Breiman, L. The Poisson tendency in traffic distribution. Ann. Math. Stat. 1963, 34, 308–311. [Google Scholar] [CrossRef]
- Paxson, V.; Floyd, S. Wide area traffic: The failure of Poisson modeling. IEEE/ACM Trans. Netw. 1995, 3, 226–244. [Google Scholar] [CrossRef]
- Karagiannis, T.; Molle, M.; Faloutsos, M.; Broido, A. A nonstationary Poisson view of Internet traffic. In Proceedings of the IEEE INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 3, pp. 1558–1569. [Google Scholar] [CrossRef]
- Leland, W.; Taqqu, M.; Willinger, W.; Wilson, D. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 1994, 2, 1–15. [Google Scholar] [CrossRef]
- Garrett, M.W.; Willinger, W. Analysis, Modeling and Generation of Self-Similar VBR Video Traffic. ACM SIGCOMM Comput. Commun. Rev. 1994, 24, 269–280. [Google Scholar] [CrossRef]
- Narayan, O. Exact asymptotic queue length distribution for fractional brownian traffic. Adv. Perform. Anal. 1998, 1, 39. [Google Scholar]
- Terdik, G.; Gyires, T. LÉvy Flights and Fractal Modeling of Internet Traffic. IEEE/ACM Trans. Netw. 2009, 17, 120–129. [Google Scholar] [CrossRef]
- Jin, X.; Min, G. Modelling and analysis of an integrated scheduling scheme with heterogeneous LRD and SRD traffic. IEEE Trans. Wirel. Commun. 2013, 12, 2598–2607. [Google Scholar] [CrossRef]
- Breiman, L.I.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Wadsworth. Biometrics 1984, 40, 358. [Google Scholar]
- Zemel, R.S.; Pitassi, T. A Gradient-Based Boosting Algorithm for Regression Problems. In Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver, CO, USA, 1 January 2000; pp. 696–702. [Google Scholar]
- Gao, S.; Li, S. Bloody Mahjong playing strategy based on the integration of deep learning and XGBoost. CAAI Trans. Intell. Technol. 2022, 7, 95–106. [Google Scholar] [CrossRef]
- Çayir, A.; Yenidoğan, I.; Dağ, H. Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 20–23 September 2018; pp. 494–497. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Quan, Z.; Chung, J.M. Priority queueing analysis of self-similar in high-speed networks. In Proceedings of the IEEE International Conference on Communications, ICC’03, Anchorage, AK, USA, 11–15 May 2003; Volume 3, pp. 1606–1610. [Google Scholar] [CrossRef]
Terminology | Definition |
---|---|
C | The server capacity of the multi-queue GPS system |
M | The number of the traffic flow |
The mth traffic flow served by the multi-queue GPS system | |
f | The type of traffic stochastic model, where denotes the Poisson process, and denotes the self-similar traffic |
The cumulative arrival process of the traffic until time t and flow_m obey f | |
The weight assigned to | |
The guaranteed service rate of | |
The vector of the average queue length of each traffic flow | |
The average queue length of | |
The vector of the average queue delay of each traffic flow | |
The average queue delay of | |
The arrival rate of , where obeys the stochastic model f | |
The Hurst parameter of | |
The flow-related features | |
The vector of the mean arrival rate | |
The server-related features | |
The extended features | |
The input features of the performance prediction |
Utility of the Server | Methods | Decision_CART | Boosting_Xgboost | MLP | MLP1_Norm | GCN | DLPE | EBA_Multi | MPPA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | |
Ut = (0.7, 0.8) | GPS queue | 1.363 | 45.271 | 0.322 | 36.077 | 0.326 | 40.635 | 0.430 | 60.215 | 0.610 | 65.425 | 0.510 | 31.757 | 6.965 | 503.397 | 0.524 | 81.482 |
Average queue | 0.454 | 15.090 | 0.107 | 12.026 | 0.109 | 13.545 | 0.143 | 20.072 | 0.203 | 21.808 | 0.170 | 10.586 | 2.322 | 167.799 | – | - | |
Queue 1 | 0.192 | 13.202 | 0.093 | 10.862 | 0.123 | 17.539 | 0.129 | 17.639 | 0.132 | 16.117 | 0.075 | 7.107 | 2.465 | 133.338 | - | - | |
Queue 2 | 0.751 | 18.023 | 0.114 | 12.722 | 0.103 | 13.292 | 0.152 | 21.647 | 0.222 | 23.046 | 0.223 | 9.349 | 2.528 | 180.288 | – | – | |
Queue 3 | 0.420 | 14.047 | 0.115 | 12.493 | 0.100 | 9.804 | 0.149 | 20.929 | 0.256 | 26.262 | 0.212 | 15.301 | 1.972 | 189.771 | – | – | |
Ut = (0.8, 0.9) | GPS queue | 2.931 | 50.022 | 1.943 | 31.019 | 2.048 | 42.268 | 2.251 | 77.182 | 1.817 | 33.534 | 1.669 | 39.024 | 45.525 | 265.149 | 1.677 | 39.126 |
Average queue | 0.977 | 16.674 | 0.648 | 10.340 | 0.683 | 14.089 | 0.750 | 25.727 | 0.606 | 11.178 | 0.556 | 13.008 | 15.175 | 88.383 | – | – | |
Queue 1 | 0.551 | 14.041 | 0.478 | 9.195 | 0.497 | 19.987 | 0.580 | 24.513 | 0.460 | 8.651 | 0.386 | 8.221 | 29.014 | 75.945 | – | – | |
Queue 2 | 1.324 | 17.874 | 0.740 | 10.679 | 0.766 | 11.134 | 0.837 | 26.828 | 0.728 | 12.689 | 0.696 | 8.057 | 7.892 | 93.552 | – | – | |
Queue 3 | 1.056 | 18.107 | 0.725 | 11.145 | 0.785 | 11.147 | 0.834 | 25.841 | 0.629 | 12.194 | 0.587 | 22.746 | 8.619 | 95.651 | – | – | |
Ut = (0.9, 0.95) | GPS queue | 10.483 | 70.283 | 10.123 | 70.770 | 10.495 | 67.321 | 11.367 | 110.224 | 8.771 | 60.211 | 4.705 | 47.388 | 24.120 | 564.242 | 5.227 | 30.160 |
Average queue | 3.494 | 23.428 | 3.374 | 23.590 | 3.498 | 22.440 | 3.789 | 36.741 | 2.924 | 20.070 | 1.568 | 15.796 | 8.040 | 188.081 | – | – | |
Queue 1 | 0.146 | 10.926 | 0.189 | 11.022 | 0.129 | 11.437 | 0.646 | 28.921 | 0.140 | 10.753 | 0.341 | 10.019 | 11.106 | 65.160 | – | – | |
Queue 2 | 7.196 | 34.888 | 7.040 | 40.244 | 7.152 | 35.200 | 7.348 | 50.409 | 6.383 | 29.041 | 3.732 | 23.163 | 9.029 | 294.099 | – | – | |
Queue 3 | 3.141 | 24.470 | 2.894 | 19.504 | 3.214 | 20.684 | 3.373 | 30.894 | 2.248 | 20.417 | 0.632 | 14.206 | 3.985 | 204.984 | – | – |
Utility of the Server | Methods | Decision_CART | Boosting_Xgboost | MLP | MLP1_Norm | GCN | DLPE | EBA_Multi | MPPA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | |
Ut = (0.7, 0.8) | GPS queue | 0.794 | 33.342 | 0.262 | 24.557 | 0.325 | 103.707 | 0.776 | 142.814 | 0.712 | 55.628 | 0.277 | 23.824 | 8.037 | 510.786 | 0.532 | 82.498 |
Average queue | 0.265 | 11.114 | 0.087 | 8.186 | 0.108 | 34.569 | 0.259 | 47.605 | 0.237 | 18.543 | 0.092 | 7.941 | 2.679 | 170.262 | – | – | |
Queue 1 | 0.253 | 10.729 | 0.067 | 7.142 | 0.107 | 31.132 | 0.398 | 78.09 | 0.137 | 13.304 | 0.047 | 4.706 | 3.125 | 144.057 | – | – | |
Queue 2 | 0.242 | 10.773 | 0.095 | 8.674 | 0.109 | 35.773 | 0.221 | 40.79 | 0.321 | 22.846 | 0.111 | 6.838 | 2.750 | 188.550 | – | – | |
Queue 3 | 0.299 | 11.840 | 0.100 | 8.741 | 0.109 | 36.802 | 0.157 | 23.934 | 0.254 | 19.478 | 0.119 | 12.28 | 2.162 | 178.180 | – | – | |
Ut = (0.8, 0.9) | GPS queue | 1.124 | 43.674 | 0.714 | 25.873 | 0.821 | 59.717 | 1.151 | 108.249 | 0.675 | 32.012 | 0.807 | 19.473 | 32.700 | 145.361 | 1.111 | 29.788 |
Average queue | 0.375 | 14.558 | 0.238 | 8.624 | 0.274 | 19.906 | 0.384 | 36.083 | 0.225 | 10.671 | 0.269 | 6.491 | 10.900 | 48.454 | – | – | |
Queue 1 | 0.270 | 13.924 | 0.146 | 7.438 | 0.167 | 12.02 | 0.345 | 40.86 | 0.136 | 9.263 | 0.102 | 4.792 | 12.743 | 35.707 | – | – | |
Queue 2 | 0.532 | 14.820 | 0.332 | 9.279 | 0.414 | 31.501 | 0.456 | 39.012 | 0.291 | 11.396 | 0.298 | 5.643 | 8.891 | 55.380 | – | – | |
Queue 3 | 0.322 | 14.931 | 0.236 | 9.156 | 0.24 | 16.196 | 0.35 | 28.377 | 0.248 | 11.353 | 0.407 | 9.038 | 11.066 | 54.274 | – | – | |
Ut = (0.9, 0.95) | GPS queue | 0.338 | 36.473 | 0.427 | 30.165 | 0.474 | 54.739 | 0.898 | 103.795 | 1.046 | 55.446 | 1.730 | 63.018 | 3.148 | 215.842 | 0.424 | 42.577 |
Average queue | 0.113 | 12.158 | 0.142 | 10.055 | 0.158 | 18.246 | 0.299 | 34.598 | 0.349 | 18.482 | 0.577 | 21.006 | 1.049 | 71.947 | – | – | |
Queue 1 | 0.121 | 10.266 | 0.059 | 6.094 | 0.193 | 24.735 | 0.298 | 37.085 | 0.109 | 11.979 | 0.040 | 4.259 | 1.899 | 71.371 | – | – | |
Queue 2 | 0.096 | 12.845 | 0.273 | 13.255 | 0.231 | 22.934 | 0.385 | 38.707 | 0.867 | 33.801 | 1.658 | 54.425 | 0.793 | 83.299 | – | – | |
Queue 3 | 0.121 | 13.361 | 0.095 | 10.816 | 0.050 | 7.070 | 0.215 | 28.003 | 0.070 | 9.666 | 0.032 | 4.334 | 0.456 | 61.171 | – | – |
Utility of the Server | Methods | Decision_CART | Boosting_Xgboost | MLP | MLP1_Norm | GCN | DLPE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | |
Ut = (0.7, 0.8) | GPS queue | 1.817 | 35.324 | 1.057 | 23.298 | 1.269 | 68.845 | 1.268 | 59.329 | 1.086 | 58.139 | 0.925 | 23.276 |
Average queue | 0.606 | 11.775 | 0.352 | 7.766 | 0.423 | 22.948 | 0.423 | 19.776 | 0.362 | 19.380 | 0.308 | 7.759 | |
Queue 1 | 0.195 | 9.806 | 0.090 | 6.658 | 0.180 | 26.775 | 0.152 | 18.227 | 0.100 | 9.740 | 0.091 | 8.230 | |
Queue 2 | 0.667 | 12.992 | 0.342 | 8.264 | 0.389 | 13.661 | 0.405 | 20.556 | 0.352 | 23.649 | 0.302 | 6.461 | |
Queue 3 | 0.956 | 12.526 | 0.625 | 8.376 | 0.700 | 28.409 | 0.711 | 20.546 | 0.634 | 24.750 | 0.532 | 8.585 | |
Ut = (0.8, 0.9) | GPS queue | 2.138 | 50.139 | 1.398 | 29.310 | 1.603 | 79.850 | 1.733 | 87.859 | 1.379 | 43.704 | 1.035 | 34.939 |
Average queue | 0.713 | 16.713 | 0.466 | 9.770 | 0.534 | 26.617 | 0.578 | 29.286 | 0.460 | 14.568 | 0.269 | 11.646 | |
Queue 1 | 0.365 | 14.489 | 0.320 | 8.602 | 0.407 | 31.176 | 0.434 | 25.240 | 0.341 | 10.697 | 0.102 | 4.792 | |
Queue 2 | 0.727 | 15.152 | 0.715 | 10.318 | 0.781 | 17.291 | 0.831 | 32.649 | 0.666 | 14.945 | 0.298 | 5.643 | |
Queue 3 | 1.046 | 20.498 | 0.363 | 10.39 | 0.415 | 31.383 | 0.468 | 29.970 | 0.372 | 18.062 | 0.407 | 9.038 | |
Ut = (0.9, 0.95) | GPS queue | 2.760 | 72.729 | 2.625 | 78.986 | 2.440 | 86.612 | 3.374 | 121.628 | 2.351 | 52.921 | 2.003 | 47.945 |
Average queue | 0.920 | 24.243 | 0.875 | 26.329 | 0.813 | 28.871 | 1.125 | 40.543 | 0.784 | 17.640 | 0.668 | 15.982 | |
Queue 1 | 0.739 | 23.660 | 0.723 | 25.550 | 0.611 | 30.666 | 1.006 | 39.771 | 0.647 | 18.306 | 0.300 | 11.156 | |
Queue 2 | 1.011 | 24.749 | 0.909 | 27.013 | 0.970 | 29.437 | 1.203 | 42.688 | 0.798 | 16.945 | 0.934 | 20.172 | |
Queue 3 | 1.010 | 24.321 | 0.993 | 26.423 | 0.859 | 26.509 | 1.165 | 39.169 | 0.906 | 17.670 | 0.769 | 16.617 |
Utility of the Server | Methods | Decision_CART | Boosting_Xgboost | MLP | MLP1_Norm | GCN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | |
Ut = (0.7, 0.8) | GPS queue | 2.724 | 69.864 | 1.749 | 62.785 | 1.931 | 137.716 | 2.189 | 242.778 | 4.409 | 190.526 |
Average queue | 0.908 | 23.288 | 0.583 | 20.928 | 0.644 | 45.905 | 0.730 | 80.926 | 1.470 | 63.509 | |
Queue 1 | 0.157 | 14.380 | 0.181 | 18.405 | 0.288 | 35.753 | 0.382 | 68.040 | 1.681 | 65.080 | |
Queue 2 | 1.978 | 32.060 | 1.219 | 21.229 | 1.342 | 55.426 | 1.360 | 82.488 | 1.326 | 59.362 | |
Queue 3 | 0.589 | 23.424 | 0.349 | 23.151 | 0.301 | 46.537 | 0.447 | 92.250 | 1.402 | 66.084 | |
Ut = (0.8, 0.9) | GPS queue | 3.064 | 54.818 | 2.307 | 56.655 | 3.058 | 188.254 | 3.273 | 134.738 | 3.052 | 161.008 |
Average queue | 1.021 | 18.273 | 0.769 | 18.885 | 1.019 | 62.751 | 1.091 | 44.913 | 1.017 | 53.669 | |
Queue 1 | 1.077 | 18.029 | 0.893 | 18.060 | 1.098 | 57.326 | 1.184 | 42.322 | 1.165 | 56.523 | |
Queue 2 | 0.953 | 18.392 | 0.699 | 19.299 | 0.961 | 63.847 | 1.031 | 46.773 | 0.916 | 50.380 | |
Queue 3 | 1.034 | 18.397 | 0.715 | 19.296 | 0.999 | 67.081 | 1.058 | 45.643 | 0.971 | 54.105 | |
Ut = (0.9, 0.95) | GPS queue | 4.308 | 69.125 | 3.906 | 58.554 | 4.395 | 186.627 | 6.079 | 163.139 | 4.409 | 190.526 |
Average queue | 1.436 | 23.042 | 1.302 | 19.518 | 1.465 | 62.209 | 2.026 | 54.380 | 1.470 | 63.509 | |
Queue 1 | 1.441 | 22.375 | 1.463 | 18.945 | 1.570 | 56.631 | 2.204 | 54.974 | 1.681 | 65.080 | |
Queue 2 | 1.557 | 23.746 | 1.249 | 20.036 | 1.442 | 60.863 | 1.962 | 53.989 | 1.326 | 59.362 | |
Queue 3 | 1.310 | 23.004 | 1.194 | 19.573 | 1.383 | 69.133 | 1.913 | 54.176 | 1.402 | 66.084 |
Utility of the Server | Methods | Decision_CART | Boosting_Xgboost | MLP | MLP1_Norm | GCN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | |
Ut = (0.7, 0.8) | GPS queue | 0.193 | 17.440 | 0.765 | 32.583 | 1.097 | 189.256 | 0.736 | 154.571 | 0.929 | 192.627 |
Average queue | 0.064 | 5.813 | 0.255 | 10.861 | 0.366 | 63.085 | 0.245 | 51.524 | 0.310 | 64.209 | |
Queue 1 | 0.099 | 8.386 | 0.580 | 16.114 | 0.301 | 40.193 | 0.415 | 78.855 | 0.170 | 23.036 | |
Queue 2 | 0.033 | 4.417 | 0.057 | 7.876 | 0.597 | 97.846 | 0.233 | 60.555 | 0.640 | 144.916 | |
Queue 3 | 0.061 | 4.637 | 0.128 | 8.593 | 0.199 | 51.217 | 0.088 | 15.161 | 0.119 | 24.675 | |
Ut = (0.8, 0.9) | GPS queue | 0.708 | 38.107 | 0.529 | 23.798 | 1.516 | 154.923 | 0.933 | 112.942 | 0.988 | 135.806 |
Average queue | 0.236 | 12.702 | 0.176 | 7.933 | 0.505 | 51.641 | 0.311 | 37.647 | 0.329 | 45.269 | |
Queue 1 | 0.420 | 19.585 | 0.282 | 10.914 | 0.443 | 33.275 | 0.524 | 42.713 | 0.326 | 17.391 | |
Queue 2 | 0.216 | 9.275 | 0.195 | 6.151 | 0.854 | 82.241 | 0.325 | 56.362 | 0.526 | 97.965 | |
Queue 3 | 0.072 | 9.247 | 0.052 | 6.733 | 0.219 | 39.407 | 0.084 | 13.867 | 0.136 | 20.450 | |
Ut = (0.9, 0.95) | GPS queue | 1.248 | 59.123 | 1.295 | 60.963 | 2.534 | 197.001 | 1.989 | 145.675 | 1.698 | 130.040 |
Average queue | 0.416 | 19.708 | 0.432 | 20.321 | 0.845 | 65.667 | 0.663 | 48.558 | 0.566 | 43.347 | |
Queue 1 | 1.024 | 32.465 | 1.079 | 36.833 | 1.122 | 43.686 | 1.499 | 60.428 | 1.098 | 36.256 | |
Queue 2 | 0.115 | 12.780 | 0.101 | 11.507 | 1.103 | 102.901 | 0.353 | 70.648 | 0.387 | 71.791 | |
Queue 3 | 0.109 | 13.878 | 0.115 | 12.623 | 0.309 | 50.414 | 0.137 | 14.599 | 0.213 | 21.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Liu, L.; Dong, M.; Ota, K. On-Demand Centralized Resource Allocation for IoT Applications: AI-Enabled Benchmark. Sensors 2024, 24, 980. https://doi.org/10.3390/s24030980
Zhang R, Liu L, Dong M, Ota K. On-Demand Centralized Resource Allocation for IoT Applications: AI-Enabled Benchmark. Sensors. 2024; 24(3):980. https://doi.org/10.3390/s24030980
Chicago/Turabian StyleZhang, Ran, Lei Liu, Mianxiong Dong, and Kaoru Ota. 2024. "On-Demand Centralized Resource Allocation for IoT Applications: AI-Enabled Benchmark" Sensors 24, no. 3: 980. https://doi.org/10.3390/s24030980
APA StyleZhang, R., Liu, L., Dong, M., & Ota, K. (2024). On-Demand Centralized Resource Allocation for IoT Applications: AI-Enabled Benchmark. Sensors, 24(3), 980. https://doi.org/10.3390/s24030980