Emerging Technologies in Edge Computing and Networking
1. Introduction
2. Overview of Contribution
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Nakazato, J.; Li, Z.; Maruta, K.; Kubota, K.; Yu, T.; Tran, G.K.; Sakaguchi, K.; Masuko, S. MEC/Cloud Orchestrator to Facilitate Private/Local Beyond 5G with MEC and Proof-of-Concept Implementation. Sensors 2022, 22, 5145. https://doi.org/10.3390/s22145145
- Cao, C.; Su, M.; Duan, S.; Dai, M.; Li, J.; Li, Y. QoS-Aware Joint Task Scheduling and Resource Allocation in Vehicular Edge Computing. Sensors 2022, 22, 9340. https://doi.org/10.3390/s22239340
- Maia, E.; Wannous, S.; Dias, T.; Praça, I.; Faria, A. Holistic Security and Safety for Factories of the Future. Sensors 2022, 22, 9915. https://doi.org/10.3390/s22249915
- Bruns, R.; Dötterl, J.; Dunkel, J.; Ossowski, S. Evaluating Collaborative and Autonomous Agents in Data-Stream-Supported Coordination of Mobile Crowdsourcing. Sensors 2023, 23, 614. https://doi.org/10.3390/s23020614
- Algarvio, H.; Lopes, F. Strategic Bidding of Retailers in Wholesale Markets: Continuous Intraday Markets and Hybrid Forecast Methods. Sensors 2023, 23, 1681. https://doi.org/10.3390/s23031681
- Chen, M.; Chen, Q.; Su, Z.; Sun, S.; Li, C. Task-Similarity-Based VNF Aggregation for Air–Ground Integrated Networks. Sensors 2023, 23, 2259. https://doi.org/10.3390/s23042259
- Marco-Detchart, C.; Carrascosa, C.; Julian, V.; Rincon, J. Robust Multi-Sensor Consensus Plant Disease Detection Using the Choquet Integral. Sensors 2023, 23, 2382. https://doi.org/10.3390/s23052382
- Hafid, A.; Hafid, A.S.; Makrakis, D. Sharding-Based Proof-of-Stake Blockchain Protocols: Key Components & Probabilistic Security Analysis. Sensors 2023, 23, 2819. https://doi.org/10.3390/s23052819
- Choi, K.; Wi, S.M.; Jung, H.G.; Suhr, J.K. Simplification of Deep Neural Network-Based Object Detector for Real-Time Edge Computing. Sensors 2023, 23, 3777. https://doi.org/10.3390/s23073777
- Leng, J.; Chen, X.; Zhao, J.; Wang, C.; Zhu, J.; Yan, Y.; Zhao, J.; Shi, W.; Zhu, Z.; Jiang, X.; et al. A Light Vehicle License-Plate-Recognition System Based on Hybrid Edge–Cloud Computing. Sensors 2023, 23, 8913. https://doi.org/10.3390/s23218913
- Tominaga, R.; Seo, M. Image Generation from Text Using StackGAN with Improved Conditional Consistency Regularization. Sensors 2023, 23, 249. https://doi.org/10.3390/s23010249
References
- Martín, D.G.; Florez, S.L.; González-Briones, A.; Corchado, J.M. COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange. Sensors 2023, 23, 982. [Google Scholar] [CrossRef] [PubMed]
- Campero-Jurado, I.; Márquez-Sánchez, S.; Quintanar-Gómez, J.; Rodríguez, S.; Corchado, J.M. Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence. Sensors 2020, 20, 6241. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, U.; Faria, P.; Gomes, L.; Valej, Z. Future of energy management systems in smart cities: A systematic literature review. Sustain. Cities Soc. 2023, 96, 104720. [Google Scholar] [CrossRef]
- Kumar, P.; Lin, Y.; Bai, G.; Paverd, A.; Dong J., S.; Martin, A. Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues. IEEE Commun. Surv. Tutor. 2019, 21, 2886–2927. [Google Scholar] [CrossRef]
- Bwalya, D.; Azevedo, M.; Corchado, E.S. Exploring the Cutting-Edge of Energy Aggregation Approaches and Business Models. In International Symposium on Distributed Computing and Artificial Intelligence; 20th International Conference DCAI; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Adli, H.K.; Remli, M.A.; Wan Salihin Wong, K.N.S.; Ismail, N.A.; González-Briones, A.; Corchado, J.M.; Mohamad, M.S. Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. Sensors 2023, 23, 3752. [Google Scholar] [CrossRef] [PubMed]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.J.; Liyanage, M. Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Stan, C.; Rubio García, C.; Cimoli, B.; Vegas Olmos, J.J.; Tafur Monroy, I.; Rommel, S. Securing Communication with Quantum Key Distribution: Implications and Impact on Network Performance. In Proceedings of the Optica Advanced Photonics Congress 2022, Maastricht, The Netherlands, 24–28 July 2022. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Duong, T.Q.; Ansere, J.A.; Narottama, B.; Sharma, V.; Dobre O., A.; Shin, H. Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions. IEEE Open J. Veh. Technol. 2022, 3, 375–387. [Google Scholar] [CrossRef]
- Bouchmal, O.; Cimoli, B.; Stabile, R.; Vegas Olmos, J.J.; Tafur Monroy, I. From classical to quantum machine learning: Survey on routing optimization in 6G software defined networking. Front. Commun. Netw. 2023, 4, 1220227. [Google Scholar] [CrossRef]
- Deng, N.; Zong, L.; Jiang, H.; Duan, Y.; Zhang, K. Challenges and Enabling Technologies for Multi-Band WDM Optical Networks. J. Light. Technol. 2022, 40, 3385–3394. [Google Scholar] [CrossRef]
- Hosseini, S.; de Miguel, I.; Merayo, N.; Aguado, J.; de Dios, Ó.; Durán Barroso, R.J. Migration of elastic optical networks to the C+L-bands subject to a partial upgrade of the number of erbium-doped fiber amplifiers. J. Opt. Commun. Netw. 2023, 15, F22–F35. [Google Scholar] [CrossRef]
- Kong, X.; Wu, Y.; Wang, H.; Xia, F. Edge Computing for Internet of Everything: A Survey. IEEE Internet Things J. 2022, 9, 23472–23485. [Google Scholar] [CrossRef]
- Cherrared, S.; Imadali, S.; Fabre, E.; Gössler, G.; Yahia, I.G.B. A Survey of Fault Management in Network Virtualization Environments: Challenges and Solutions. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1537–1551. [Google Scholar] [CrossRef]
- Masoumi, M.; de Miguel, I.; Durán Barroso, R.J.; Ruiz, L.; Brasca, F.; Rizzi, G.; Merayo, N.; Aguado, J.C.; Fernández, P.; Lorenzo, R.M.; et al. Dynamic Online VNF Placement with Different Protection Schemes in a MEC Environment. In Proceedings of the 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 30 November–2 December 2022. [Google Scholar] [CrossRef]
- Cao, H.; Du, J.; Zhao, H.; Luo, D.X.; Kumar, N.; Yang, L.; Yu, F.R. Toward Tailored Resource Allocation of Slices in 6G Networks With Softwarization and Virtualization. IEEE Internet Things J. 2022, 9, 6623–6637. [Google Scholar] [CrossRef]
- Roelents, L.; Muñiz de Costa, A.; González de Dios, O. Telefónica I+D’s Roadmap for Integrated SDN Orchestration of Multi-domain Multi-layer Transport Networks. In International Symposium on Distributed Computing and Artificial Intelligence; 20th International Conference DCAI; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Shen, X.; Gao, J.; Wu, W.; Li, M.; Zhou, C.; Zhuang, W. Holistic Network Virtualization and Pervasive Network Intelligence for 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1–30. [Google Scholar] [CrossRef]
- Janjua, H.K.; de Miguel, I.; Durán Barroso, R.J.; González de Dios, Ó.; Aguado, J.C.; Merayo, N.; Fernández, P.; Lorenzo, R.M. Efficient Optimization of Actor-Critic Learning for Constrained Resource Orchestration in RAN with Network Slicing. In Proceedings of the 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 6–9 March 2023. [Google Scholar] [CrossRef]
- Habibi, M.A.; Han, B.; Fellan, A.; Jiang, W.; Sánchez, A.G.; Pavón, I.L.; Boubendir, A.; Schotten, H.D. Toward an Open, Intelligent, and End-to-End Architectural Framework for Network Slicing in 6G Communication Systems. IEEE Open J. Commun. Soc. 2023, 4, 1615–1658. [Google Scholar] [CrossRef]
- Taurone, F.; Lucani, D.; Fehér, M.; Zhang, Q. Change a Bit to Save Bytes: Compression for Floating Point Time-Series Data. In Proceedings of the IEEE International Conference on Communications (ICC), Rome, Italy, 28 May–1 June 2023. [Google Scholar] [CrossRef]
- Zeng, Y.; Calvo-Palomino, R.; Giustiniano, D.; Bovet, G.; Banerjee, S. Adaptive Uplink Data Compression in Spectrum Crowdsensing Systems. IEEE/ACM Trans. Netw. 2023, 31, 2207–2221. [Google Scholar] [CrossRef]
- Abbasi, M.; Plaza, M.; Prieto, J.; Corchado, J.M. Security in the Internet of Things Application Layer: Requirements, Threats, and Solutions. IEEE Access 2022, 10, 97197–97216. [Google Scholar] [CrossRef]
- Ferens, M.; Dushku, E.; Kosta, S. Securing PUFs Against ML Modeling Attacks via an Efficient Challenge-Response Approach. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hoboken, NJ, USA, 20 May 2023. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wang, Q.; Zhang, J.; Ng, S.X.; Hanzo, L. The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2022, 24, 839–894. [Google Scholar] [CrossRef]
- Rubio García, C.; Rommel, S.; Takarabt, S.; Vegas Olmos, J.J.; Guilley, S.; Nguyen, P.; Tafur Monroy, I. Quantum-resistant Transport Layer Security. Comput. Commun. 2023, 213, 345–358. [Google Scholar] [CrossRef]
- Waleed, M.; Kamal, T.; Um, T.W.; Hafeez, A.; Habib, B.; Skouby, K.E. Unlocking Insights in IoT-Based Patient Monitoring: Methods for Encompassing Large-Data Challenges. Sensors 2023, 23, 6760. [Google Scholar] [CrossRef]
- Abbasi, M.; Prieto, J.; Shahraki, A.; Corchado, J.M. Industrial data monetization: A blockchain-based industrial IoT data trading system. Internet Things 2023, 24, 100959. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, J.; Durán Barroso, R.J. Emerging Technologies in Edge Computing and Networking. Sensors 2024, 24, 1271. https://doi.org/10.3390/s24041271
Prieto J, Durán Barroso RJ. Emerging Technologies in Edge Computing and Networking. Sensors. 2024; 24(4):1271. https://doi.org/10.3390/s24041271
Chicago/Turabian StylePrieto, Javier, and Ramón J. Durán Barroso. 2024. "Emerging Technologies in Edge Computing and Networking" Sensors 24, no. 4: 1271. https://doi.org/10.3390/s24041271
APA StylePrieto, J., & Durán Barroso, R. J. (2024). Emerging Technologies in Edge Computing and Networking. Sensors, 24(4), 1271. https://doi.org/10.3390/s24041271