Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi
Abstract
:1. Introduction
- We present Wi-AM, an innovative gesture recognition system that utilizes a pair of Wi-Fi transceivers to achieve an accurate cross-domain performance while requiring only one sample per gesture.
- We design a multi-domain adversarial scheme that aims to eliminate the negative impact of different domain factors on the data distribution while retaining valid information related to gestures. Furthermore, we introduce a new meta-learning framework to implement an updated model of one sample in a new domain for accurate gesture classification.
- Comprehensive evaluations in cross-domain situations demonstrate the effectiveness of Wi-AM.
2. Related Work
2.1. Wi-Fi-Based Cross-Domain Sensing Technology
2.2. Meta-Learning-Based Wi-Fi Sensing Techniques
3. Background and Motivation
3.1. Signal Transmission Model
3.2. Motivation
3.2.1. Impact of Domain Variation
3.2.2. Influence of the Training Data Volume
4. System Overview
5. System Design
5.1. Signal Preprocessing Module
5.2. Adversarial Domain Generalization Module
5.2.1. Feature Extractor
5.2.2. Gesture Classifier
5.2.3. Multi-Adversarial Domain Discriminator
5.3. Meta-Learning Training Module
Algorithm 1 Proposed meta-learning recognition module |
|
6. Experimental Evaluations
6.1. Experiment Setup
6.2. Overall Performance
6.3. Impact of Adversarial Domain Generalization Module
6.4. Impact of Meta-Learning Methodology
6.5. Comparison with Other Models
6.6. Impact of Training Dataset Diversity
6.7. Multiple Datasets to Validate Model Generalization Performance
6.8. Impact of Crossing Multiple Target Domains
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Wang, S.; Zhou, G.; Zhang, D. Ultigesture: A wristband-based platform for continuous gesture control in healthcare. Smart Health 2019, 11, 45–65. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, D.; Zhao, R.; Zhang, Q. Rfid based real-time recognition of ongoing gesture with adversarial learning. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, New York, NY, USA, 10–13 November 2019; pp. 298–310. [Google Scholar]
- Zou, H.; Zhou, Y.; Yang, J.; Jiang, H.; Xie, L.; Spanos, C.J. Wifi-enabled device-free gesture recognition for smart home automation. In Proceedings of the 2018 IEEE 14th International Conference on Control and Automation (ICCA), Anchorage, AK, USA, 12–15 June 2018; pp. 476–481. [Google Scholar]
- Kim, M.; Cho, J.; Lee, S.; Jung, Y. Imu sensor-based hand gesture recognition for human-machine interfaces. Sensors 2019, 19, 3827. [Google Scholar] [CrossRef] [PubMed]
- Sbernini, L.; Quitadamo, L.R.; Riillo, F.; Lorenzo, N.D.; Gaspari, A.L.; Saggio, G. Sensory-glove-based open surgery skill evaluation. IEEE Trans. Hum.-Mach. Syst. 2018, 48, 213–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Yu, H.; Yang, X.; Lu, W.; Liu, H. Wearing-independent hand gesture recognition method based on emg armband. Pers. Ubiquitous Comput. 2018, 22, 511–524. [Google Scholar] [CrossRef]
- Wang, M.; Ni, B.; Yang, X. Recurrent modeling of interaction context for collective activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3048–3056. [Google Scholar]
- Oyedotun, O.K.; Khashman, A. Deep learning in vision-based static hand gesture recognition. Neural Comput. Appl. 2017, 28, 3941–3951. [Google Scholar] [CrossRef]
- Despinoy, F.; Bouget, D.; Forestier, G.; Penet, C.; Zemiti, N.; Poignet, J. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans. Biomed. Eng. 2015, 63, 1280–1291. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, J.; Gao, Z.; Xiao, W. Enhanced wifi csi fingerprints for device-free localization with deep learning representations. IEEE Sens. J. 2023, 23, 2750–2759. [Google Scholar] [CrossRef]
- Gu, Y.; Yan, H.; Zhang, X.; Wang, Y.; Huang, J.; Ji, Y.; Ren, F. Attention-based gesture recognition using commodity wifi devices. IEEE Sens. J. 2023, 23, 9685–9696. [Google Scholar] [CrossRef]
- Yang, B.; Wang, H.; Hu, L.; Zhu, H.; Lam, C.-T.; Fang, K. Few-shot cross-domain-based wifi sensing system for online learning in iot. IEEE Sens. J. 2023, 23, 29892–29905. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Zheng, X. Wisign: Ubiquitous american sign language recognition using commercial wi-fi devices. ACM Trans. Intell. Syst. Technol. TIST 2020, 11, 1–24. [Google Scholar] [CrossRef]
- Feng, C.; Wang, N.; Jiang, Y.; Zheng, X.; Li, K.; Wang, Z.; Chen, X. Wi-learner: Towards one-shot learning for cross-domain wi-fi based gesture recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 114. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Hu, Y.; Zeng, B. Wifi vision: Sensing, recognition, and detection with commodity mimo-ofdm wifi. IEEE Internet Things J. 2020, 7, 8296–8317. [Google Scholar] [CrossRef]
- Zou, H.; Yang, J.; Zhou, Y.; Spanos, C.J. Joint adversarial domain adaptation for resilient wifi-enabled device-free gesture recognition. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 202–207. [Google Scholar]
- Niu, K.; Zhang, F.; Wang, X.; Lv, Q.; Luo, H.; Zhang, D. Understanding wifi signal frequency features for position-independent gesture sensing. IEEE Trans. Mob. Comput. 2021, 21, 4156–4171. [Google Scholar] [CrossRef]
- Gao, R.; Li, W.; Xie, Y.; Yi, E.; Wang, L.; Wu, D.; Zhang, D. Towards robust gesture recognition by characterizing the sensing quality of wifi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–26. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, J.; Han, J.; Wu, K.; Li, Y.; Ni, L.M. Grfid: A device-free rfid-based gesture recognition system. IEEE Trans. Mob. Comput. 2016, 16, 381–393. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Chen, Y.; Liu, H.; Xie, L.; Wang, W.; He, B.; Lu, S. Multi-touch in the air: Device-free finger tracking and gesture recognition via cots rfid. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 1691–1699. [Google Scholar]
- Zhao, R.; Zhang, Q.; Cao, D.; Sheng, Z.; Wang, D. Gesture recognition with rfid: An experimental study. CCF Trans. Pervasive Comput. Interact. 2021, 3, 397–412. [Google Scholar] [CrossRef]
- Shin, D.; Yoon, J. Multi-point gesture recognition leveraging acoustic signals and cnn. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 1699–1704. [Google Scholar]
- Siddiqui, N.; Chan, R.H. Hand gesture recognition using multiple acoustic measurements at wrist. IEEE Trans. Hum.-Mach. Syst. 2020, 51, 56–62. [Google Scholar] [CrossRef]
- Nouman, M.; Khoo, S.Y.; Mahmud, M.A.; Kouzani, A.Z. Recent advances in contactless sensing technologies for mental health monitoring. IEEE Internet Things J. 2022, 9, 274–297. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhou, A.; He, H.; Wang, W.; Pan, P.; Wang, K.; Lu, Y.; Liu, L.; Ma, H. Real-time arm gesture recognition in smart home scenarios via millimeter wave sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–28. [Google Scholar] [CrossRef]
- Ninos, A.; Hasch, J.; Zwick, T. Multi-user macro gesture recognition using mmwave technology. In Proceedings of the 2021 18th European Radar Conference (EuRAD), London, UK, 5–7 April 2022; pp. 37–40. [Google Scholar]
- Yan, B.; Wang, P.; Du, L.; Chen, X.; Fang, Z.; Wu, Y. mmgesture: Semi-supervised gesture recognition system using mmwave radar. Expert Syst. Appl. 2023, 213, 119042. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, G.; Wang, S.; Zhao, H.; Jung, W. Signfi: Sign language recognition using wifi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–21. [Google Scholar] [CrossRef]
- Jiang, W.; Miao, C.; Ma, F.; Yao, S.; Wang, Y.; Yuan, Y.; Xue, H.; Song, C.; Ma, X.; Koutsonikolas, D.; et al. Towards environment independent device free human activity recognition. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 289–304. [Google Scholar]
- Xiao, R.; Liu, J.; Han, J.; Ren, K. Onefi: One-shot recognition for unseen gesture via cots wifi. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra, Portugal, 15–17 November 2021; pp. 206–219. [Google Scholar]
- Shi, C.; Liu, J.; Borodinov, N.; Leao, B.; Chen, Y. Towards environment-independent behavior-based user authentication using wifi. In Proceedings of the 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), New Delhi, India, 10–13 December 2020; pp. 666–674. [Google Scholar]
- Dian, C.; Wang, D.; Zhang, Q.; Zhao, R.; Yu, Y. Towards domain-independent complex and fine-grained gesture recognition with rfid. Proc. ACM Hum.-Comput. Interact. 2020, 4, 1–22. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Yin, D.; Gao, Q.; Liu, X.; Pan, M. Cross-scenario device-free gesture recognition based on self-adaptive adversarial learning. IEEE Internet Things J. 2021, 9, 7080–7090. [Google Scholar] [CrossRef]
- Lin, C.; Hu, J.; Sun, Y.; Ma, F.; Wang, L.; Wu, G. Wiau: An accurate device-free authentication system with resnet. In Proceedings of the 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 11–13 June 2018; pp. 1–9. [Google Scholar]
- Zhang, X.; Tang, C.; Yin, K.; Ni, Q. Wifi-based cross-domain gesture recognition via modified prototypical networks. IEEE Internet Things J. 2021, 9, 8584–8596. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Qian, K.; Zhang, G.; Liu, Y.; Wu, C.; Yang, Z. Zero-effort cross-domain gesture recognition with wi-fi. In Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services, Seoul, Republic of Korea, 17–21 June 2019; pp. 313–325. [Google Scholar]
- Gao, R.; Zhang, M.; Zhang, J.; Li, Y.; Yi, E.; Wu, D.; Wang, L.; Zhang, D. Towards position-independent sensing for gesture recognition with wi-fi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–28. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Qiu, S.; Liu, L.; Li, J.; Wang, Z.; Qin, K.; Jiang, Y. Gaitsense: A potential assistance for physical rehabilitation by means of wearable sensors. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; pp. 116–121. [Google Scholar]
- Li, X.; Chang, L.; Song, F.; Wang, J.; Chen, X.; Tang, Z.; Wang, Z. Crossgr: Accurate and low-cost cross-target gesture recognition using wi-fi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–23. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Zhang, L.; Wang, Z.; Yang, L. Commercial wi-fi based fall detection with environment influence mitigation. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9. [Google Scholar]
- Zhang, J.; Tang, Z.; Li, M.; Fang, D.; Nurmi, P.; Wang, Z. Crosssense: Towards cross-site and large-scale wifi sensing. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 305–320. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.A.; Xu, R.Y.; Cheng, Q. Environment-robust device-free human activity recognition with channel-state-information enhancement and one-shot learning. IEEE Trans. Mob. Comput. 2022, 21, 540–554. [Google Scholar] [CrossRef]
- Ding, S.; Chen, Z.; Zheng, T.; Luo, J. Rf-net: A unified meta-learning framework for rf-enabled one-shot human activity recognition. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual Event, Japan, 16–19 November 2020; pp. 517–530. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Understanding and modeling of wifi signal based human activity recognition. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 65–76. [Google Scholar]
- Gu, Y.; Zhang, X.; Wang, Y.; Wang, M.; Yan, H.; Ji, Y.; Liu, Z.; Li, J.; Dong, M. Wigrunt: Wifi-enabled gesture recognition using dual-attention network. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 736–746. [Google Scholar] [CrossRef]
- Lin, C.; Ji, C.; Ma, F.; Wang, L.; Zhong, W.; Wu, G. Wilca: Accelerating contactless authentication with limited data. In Proceedings of the 2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Stockholm, Sweden, 20–23 September 2022; pp. 316–324. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Der Maaten, L.V.; Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Kao, C.-H.; Chiu, W.-C.; Chen, P.-Y. Maml is a noisy contrastive learner in classification. arXiv 2021, arXiv:2106.15367. [Google Scholar]
- Triantafillou, E.; Zhu, T.; Dumoulin, V.; Evci, L.U.; Xu, K.; Goroshin, R.; Gelada, C.; Swersky, K.; Manzagol, P.-A.; Manzagol, P.A.; et al. Meta-dataset: A dataset of datasets for learning to learn from few examples. arXiv 2019, arXiv:1903.03096. [Google Scholar]
- Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Guo, L.; Wang, L.; Lin, C.; Liu, J.; Lu, B.; Fang, J.; Liu, Z.; Shan, Z.; Yang, J.; Guo, S. Wiar: A public dataset for wifi-based activity recognition. IEEE Access 2019, 7, 154935–154945. [Google Scholar] [CrossRef]
Dataset | Environments | Gestures | No. of Users | No. of Locations | No. of Orientations | No. of Transceiver Deployments |
---|---|---|---|---|---|---|
Widar3.0 | 1: Classroom; 2: Hall; 3: Office; | 1: Push&Pull; 2: Sweep; 3: Clap; 4: Slide; 5: Draw-O; 6: Draw-Zigzag; | 10 | 5 | 5 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Li, Z.; Feng, C.; Lin, J.; Meng, X. Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi. Sensors 2024, 24, 1354. https://doi.org/10.3390/s24051354
Xie J, Li Z, Feng C, Lin J, Meng X. Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi. Sensors. 2024; 24(5):1354. https://doi.org/10.3390/s24051354
Chicago/Turabian StyleXie, Jiahao, Zhenfen Li, Chao Feng, Jingzhi Lin, and Xianjia Meng. 2024. "Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi" Sensors 24, no. 5: 1354. https://doi.org/10.3390/s24051354
APA StyleXie, J., Li, Z., Feng, C., Lin, J., & Meng, X. (2024). Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi. Sensors, 24(5), 1354. https://doi.org/10.3390/s24051354