Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost
Abstract
:1. Introduction
- (1)
- The three-band spectral indices with good correlations with concentrations of Mn, Zn, As, and Pb were extracted. The combinations of spectral indices were screened by RCBP to invert the concentrations of each heavy metal using the Catboost algorithm.
- (2)
- The correlations between Fe concentration and elemental concentrations (and characteristic bands) of Mn, Zn, As, and Pb were established through Pearson coefficient analysis and radar plotting.
- (3)
- The spatial distribution and correlation of heavy metal elements in entisols in a metal mining-impacted area were determined using the spectral inversion concentration data of Mn, Zn, As, and Pb in soils.
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Methods
2.2.1. Preferred Combination of Spectral Indices Based on RCBP
2.2.2. Catboost Determination of Heavy Metal Concentrations
2.2.3. Spatial Analysis
3. Results
3.1. Spectral Index Combination Preference and Heavy Metal Concentration Assessment
3.2. Correlations between Fe and Heavy Metal Elements in Terms of Concentrations and Spectra
3.3. Analysis of the Spatial Distribution of Soil Heavy Metal Concentrations Based on Spectral Inversion
3.3.1. Spatial Distribution
3.3.2. Spatial Correlation Analysis
3.3.3. Spatial Clustering Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, C.; Liu, Y.; Wang, T.; Li, Z.; Zhou, Y.; Deng, J. Quantifying the structural characteristics and hydraulic properties of shallow Entisol in a hilly landscape. Int. Agrophys. 2022, 36, 105–113. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Bian, Z.; Sun, L.; Tian, K.; Liu, B.; Zhang, X.; Mao, Z.; Huang, B.; Wu, L. Estimation of Heavy Metals in Tailings and Soils Using Hyperspectral Technology: A Case Study in a Tin-Polymetallic Mining Area. Bull. Environ. Contam. Toxicol. 2021, 107, 1022–1031. [Google Scholar] [CrossRef]
- Benedet, L.; Silva, S.H.G.; Mancini, M.; dos Santos Teixeira, A.F.; Inda, A.V.; Demattê, J.A.; Curi, N. Variation of properties of two contrasting Oxisols enhanced by pXRF and Vis-NIR. J. S. Am. Earth Sci. 2022, 115, 103748. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Zhong, X. Prediction of soil heavy metal concentrations in copper tailings area using hyperspectral reflectance. Environ. Earth Sci. 2022, 81, 183. [Google Scholar] [CrossRef]
- Malley, D.F.; Williams, P.C. Use of Near-Infrared Reflectance Spectroscopy in Prediction of Heavy Metals in Freshwater Sediment by Their Association with Organic Matter. Environ. Sci. Technol. 1997, 31, 3461–3467. [Google Scholar] [CrossRef]
- Chakraborty, S.; Weindorf, D.C.; Deb, S.; Li, B.; Paul, S.; Choudhury, A.; Ray, D.P. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 2017, 289, 72–81. [Google Scholar] [CrossRef]
- Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 2019, 340, 70–80. [Google Scholar] [CrossRef]
- Song, L.; Jian, J.; Tan, D.J.; Xie, H.B.; Luo, Z.F.; Gao, B. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. Int. J. Appl. Earth Obs. 2015, 34, 1–9. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta Part A 2019, 211, 393–400. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, H.; Du, Y. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy. Spectrochim. Acta Part A 2018, 199, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Liu, X.; Zhang, J.; Zhou, W.; Li, J. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City. Acta Agric. Zhejiangensis 2020, 32, 1437–1445. [Google Scholar] [CrossRef]
- Wu, M.Z.; Li, X.M.; Sha, J.M. Spectral Inversion Models for Prediction of Total Chromium Content in Subtropical Soil. Spectrosc. Spect. Anal. 2014, 34, 1660–1666. [Google Scholar]
- Dong, J.; Dai, W.; Xu, J.; Li, S. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas. Int. J. Environ. Res. Public Health 2016, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Bachari, N.E.I.; Srivastava, P.K.; Manevski, K.; Kalaitzidis, C.; Macklin, M.G. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, L.; Gao, W.; Shi, T.; Chen, Y.; Gao, Y. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 2014, 216, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, H.; Dai, X.; Qin, Q.; Li, J.; Zhang, T.; Sun, Y. Spectral characteristics of copper-stressed vegetation leaves and further understanding of the copper stress vegetation index. Int. J. Remote Sens. 2019, 40, 4473–4488. [Google Scholar] [CrossRef]
- Fu, P.; Yang, K.; Meng, F.; Zhang, W.; Cui, Y.; Feng, F.; Yao, G. A new three-band spectral and metal element index for estimating soil arsenic content around the mining area. Process Saf. Environ. 2022, 157, 27–36. [Google Scholar] [CrossRef]
- Sawut, R.; Kasim, N.; Abliz, A.; Hu, L.; Yalkun, A.; Maihemuti, B.; Qingdong, S. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. Int. J. Appl. Earth Obs. 2018, 73, 14–25. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS Int. J. Geo-Inf. 2019, 8, 437. [Google Scholar] [CrossRef]
- Chakraborty, S.; Li, B.; Weindorf, D.C.; Morgan, C.L. External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra. Geoderma 2019, 337, 65–75. [Google Scholar] [CrossRef]
- Bilgili, A.V.; Akbas, F.; van Es, H.M. Combined use of hyperspectral VNIR reflectance spectroscopy and kriging to predict soil variables spatially. Precis. Agric. 2010, 12, 395–420. [Google Scholar] [CrossRef]
- Hou, L.; Li, X.; Li, F. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. J. Environ. Qual. 2019, 48, 57–63. [Google Scholar] [CrossRef]
- Pandit, C.M.; Filippelli, G.M.; Li, L. Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. Int. J. Remote Sens. 2010, 31, 4111–4123. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef] [PubMed]
- Aasen, H.; Bolten, A. Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers–From theory to application. Remote Sens. Environ. 2018, 205, 374–389. [Google Scholar] [CrossRef]
- Guo, H.; Yang, K.; Wu, F.; Chen, Y.; Shen, J. Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images. Sensors 2023, 23, 8756. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, X.; Liu, Z.; Ding, J.; Tan, K.; Chen, Y. Assessment of heavy metal pollution in agricultural soil around a gold mining area in Yitong County, China, based on satellite hyperspectral imagery. J. Appl. Remote Sens. 2021, 15, 042613. [Google Scholar] [CrossRef]
- Chen, M.; Pan, Y.X.; Huang, Y.X.; Wang, X.T.; Zhang, R.D. Spatial Distribution and Sources of Heavy Metals in Soil of a Typical Lead-Zinc Mining Area, Yangshuo. Huan Jing Ke Xue 2022, 43, 4545–4555. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Q.; Cheng, H. Application and development of hyperspectral remote sensing technology to determine the heavy metal content in soil. J. Agro-Environ. Sci. 2020, 39, 2699–2709, (In Chinese with English Abstract). [Google Scholar]
- Rathod, P.H.; Müller, I.; Van der Meer, F.D.; de Smeth, B. Analysis of visible and near infrared spectral reflectance for assessing metals in soil. Environ. Monit. Assess. 2016, 188, 558. [Google Scholar] [CrossRef] [PubMed]
- Siebielec, G.; McCarty, G.W.; Stuczynski, T.I.; Reeves, J.B., III. Near- and Mid-Infrared Diffuse Reflectance Spectroscopy for Measuring Soil Metal Content. J. Environ. Qual. 2004, 33, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Xia, F.; Peng, J.; Wang, Q.; Zhou, L.-Q.; Zhou, S. Prediction of heavy metal content in soil of cultivated land: Hyperspectral technology at provincial. J. Infrared Millim. Waves 2015, 34, 593–599. [Google Scholar]
- Shen, Q.; Xia, K.; Zhang, S.; Kong, C.; Hu, Q.; Yang, S. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Spectrochim Acta Part A 2019, 222, 117191. [Google Scholar] [CrossRef]
- Tang, M. Ore-forming Regularities and Mineralization Forecast of the Bailing Cu-Zn Deposit in A’Cheng Area, Heilongjiang Province. Master’s Thesis, Jilin University, Changchun, China, 2012. (In Chinese with English Abstract). [Google Scholar]
- US-Department-of-Agriculture. Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agriculture Handbook; US-Department-of-Agriculture: Washington, DC, USA, 1999; Volume 436, pp. 96–105. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sc. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, Q.; Weindorf, D.C.; Yuan, Z.; Yang, B.; Sun, Q.; Zhang, Z.; Yang, J.; Zhao, M. Elemental assessment of dried and ground samples of leeches via portable X-ray fluorescence. J. Anal. Atom. Spectrom. 2020, 35, 2573–2581. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, Q.; Weindorf, D.C.; Yang, B.; Yuan, Z.; Yang, J. Determination of trace elements concentrations in organic materials of “intermediate-thickness” via portable X-ray fluorescence spectrometry. J. Anal. Atom. Spectrom. 2022, 37, 2461–2469. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, Z.; Cheng, Q.; Weindorf, D.C.; Zhang, Z.; Yang, J.; Zhang, X.; Chen, G.; Xie, S. Quantitative analysis of iron and silicon concentrations in iron ore concentrate using portable X-ray fluorescence (XRF). Appl. Spectrosc. 2020, 74, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yuan, Z.; Cheng, Q.; Zhang, Z.; Yang, J. Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: Using Cu and Pb as example. Environ. Pollut. 2018, 243, 1325–1333. [Google Scholar] [CrossRef]
- National Standard SY/T 6404-2018; Analytical Method for Metal Elements in Rock by ICP-AES and ICP-MS. National Energy Administration of China: Beijing, China, 2018.
- Zhang, S. Comparative analysis of spatial interpolation methods for soil heavy metals: A case study of Yanggu county. Geomat. Spat. Inf. Technol. 2020, 43, 148–150. (In Chinese) [Google Scholar]
- Liu, Z.; Fei, Y.; Shi, H.D.; Mo, L.; Qi, J.X.; Wang, C. Source apportionment of soil heavy metals in Rucheng county of Hunan province based on UNMIX model combined with moran index. Res. Environ. Sci. 2021, 34, 2446–2458, (In Chinese with English Abstract). [Google Scholar]
- Khosravi, Y.; Zamani, A.A.; Parizanganeh, A.H.; Yaftian, M.R. Assessment of spatial distribution pattern of heavy metals surrounding a lead and zinc production plant in Zanjan Province, Iran. Geoderma Reg. 2018, 12, 10–17. [Google Scholar] [CrossRef]
- Xiang, L.; Su, Q.; Sun, G.; Zhang, Y.; Ding, J.; Wang, Q.; Yu, J. Characteristics and causes of soil heavy metal pollution in typical pharmaceutical enterprise gathering areas. Environ. Chem. 2022, 41, 2022–2034, (In Chinese with English Abstract). [Google Scholar]
- Gannouni, S.; Rebai, N.; Abdeljaoued, S. A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the North of Tunisia. J. Geogr. Inf. Syst. 2012, 4, 242–253. [Google Scholar] [CrossRef]
- Omran, E.S.E. Inference model to predict heavy metals of Bahr El Baqar soils, Egypt using spectroscopy and chemometrics technique. Model. Earth Syst. Environ. 2016, 2, 1–17. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Guo, M.; Ji, J. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci. Rep. 2017, 7, 40709. [Google Scholar] [CrossRef]
Element | Spectral Indices | Range of r Values |
---|---|---|
Pb | ① (RFD1278 − RFD622) + (RFD1530 − RFD622) | 0.5893−0.5946 |
② (RFD466 − RFD622) + (RFD1530 − RFD622) | ||
③ (RFD450 − RFD622) + (RFD1530 − RFD622) | ||
④ RFD1278/(RFD534 − RFD1682) | ||
⑤ (RFD1278 − RFD666) + (RFD1530 − RFD666) | ||
Zn | ① (RFD450 − RFD622) + (RFD1230 − RFD622) | 0.6608−0.6744 |
② (RFD466 − RFD630) + (RFD1530 − RFD630) | ||
③ (RFD462 − RFD622) + (RFD746 − RFD622) | ||
④ (RFD450 − RFD622) + (RFD1530 − RFD622) | ||
⑤ (RFD450 − RFD622) + (RFD1198 − RFD622) | ||
Mn | ① RFD2271/(RFD2275 + RFD1806) | 0.6440−0.6595 |
② (RFD1646 − RFD2383)/(RFD1646 + RFD1318) | ||
③ (RFD1806 − RFD2263)/(RFD1806 + RFD2275) | ||
④ (RFD1094 − RFD1638)/(RFD1094 + RFD1106) | ||
⑤ RFD1342/(RFD2275 + RFD1806) | ||
As | ① (RFD1274 − RFD1102)/(RFD1274 + RFD930) | 0.6657−0.6756 |
② (RFD622 − RFD746)/(RFD622 + RFD1122) | ||
③ (RFD930 − RFD938)/(RFD930 + RFD1274) | ||
④ (RFD1274 − RFD1682)/(RFD1274 + RFD930) | ||
⑤ (RFD622 − RFD738)/(RFD622 + RFD1122) | ||
Fe | ① RFD458/(RFD1090 + RFD654) | 0.6077−0.6380 |
② RFD474/(RFD1090 + RFD654) | ||
③ (RFD522 − RFD630)/(RFD522 + RFD934) | ||
④ (RFD1694 − RFD930)/(RFD1694 + RFD1330) | ||
⑤ RFD458/(RFD1310 + RFD654) |
Heavy Metal Element | Expected Index | Variance | Z-Score | p-Value | Moran’s I | |
---|---|---|---|---|---|---|
As | Real | −0.0111 | 0.0048 | 3.6874 | 0.0002 | 0.2450 |
Pre | −0.0111 | 0.0050 | 3.5956 | 0.0003 | 0.2440 | |
Mn | Real | −0.0111 | 0.0050 | 3.7931 | 0.0001 | 0.2563 |
Pre | −0.0111 | 0.0050 | 3.1619 | 0.0015 | 0.2120 | |
Pb | Real | −0.0111 | 0.0054 | 2.8937 | 0.0038 | 0.2017 |
Pre | −0.0111 | 0.0053 | 1.2835 | 0.1993 | 0.0821 | |
Zn | Real | −0.0111 | 0.0051 | 2.0108 | 0.0443 | 0.1323 |
Pre | −0.0111 | 0.0052 | 0.6522 | 0.5142 | 0.0358 |
Heavy Metals Studied | Heavy Metals Studied Selected Spectral Bands (nm) | Reference |
---|---|---|
Pb, Zn, Cu, Cd, Mn | 800, 1300 | [24] |
Pb, Zn, Mn | 500, 610 | [51] |
Cd, Cu, Pb, Zn, Ni, Mn, Cr, Co, Fe | 538, 578, 630, 870, 1900, 2240, 2376 | [52] |
Al | 480, 500, 565, 610, 680, 750, 1000, 1430, 1755, 1887, 1920, 1950, 2210, 2260 | [9] |
Cu | 480, 500, 610, 750, 860, 1300, 1430, 1920, 2150, 2260 | |
Cr | 480, 500, 610, 715, 750, 860, 1300, 1430, 1755, 1920, 1950 | |
Fe, Cu, Zn, Hg | 486, 424, 1546, 1632, 1462, 1658, 1736, 1832, 1924, 2360 | [53] |
Cd | 552, 698, 814, 1042, 1370, 1546, 1722, 1868, 2360, 2924 | |
Ni | 552, 698, 814, 1042, 1332, 1546, 1722, 1868, 2360, 2924 | |
Pb | 450, 466, 622, 1278, 1530 | This research |
As | 622, 746, 930, 938, 1102, 1122, 1274 | |
Zn | 450, 622, 630, 1230 | |
Mn | 1318, 1646, 1806, 2271, 2275, 2383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, P.; Zhang, J.; Yuan, Z.; Feng, J.; Zhang, Y.; Meng, F.; Zhou, S. Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost. Sensors 2024, 24, 1492. https://doi.org/10.3390/s24051492
Fu P, Zhang J, Yuan Z, Feng J, Zhang Y, Meng F, Zhou S. Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost. Sensors. 2024; 24(5):1492. https://doi.org/10.3390/s24051492
Chicago/Turabian StyleFu, Pingjie, Jiawei Zhang, Zhaoxian Yuan, Jianfei Feng, Yuxuan Zhang, Fei Meng, and Shubin Zhou. 2024. "Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost" Sensors 24, no. 5: 1492. https://doi.org/10.3390/s24051492
APA StyleFu, P., Zhang, J., Yuan, Z., Feng, J., Zhang, Y., Meng, F., & Zhou, S. (2024). Estimating the Heavy Metal Contents in Entisols from a Mining Area Based on Improved Spectral Indices and Catboost. Sensors, 24(5), 1492. https://doi.org/10.3390/s24051492