Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies
Abstract
:1. Introduction
1.1. Fifth-Generation in Australia
- Low-band 5G, which uses frequency bands below 1 GHz, provides longer ranges and better penetration into buildings but sacrifices speed and capacity.
- Mid-band 5G, operating between 1 and 6 GHz bands, offers a balance between range, building penetration, and network speed.
- mmWave band (high-band) 5G, using frequencies at 26 GHz band (25.1 GHz–27.0 GHz) and above, delivers faster speeds and higher capacity but with shorter range and less penetration.
1.2. Perspectives on Health Effects of Non-Ionising Radiation
1.3. Literature Review: Existing Exposure Systems
2. Materials and Methods
2.1. Design and Development of the RF Exposure System within an Anechoic Chamber
2.2. Conducting Measurements in an Anechoic Chamber
2.3. Refining Setup for Optimal Radiation Focal Spot
2.4. Media and Solutions Selected for RF Exposure
2.5. Saline Solution
ECG and Ultrasonic Conductive Gel
3. Results
3.1. Thermal Maps Acquisition through IR Thermal Camera
3.2. Determining 26 GHz-mmWave Temperature Rise over Time
4. Discussion
4.1. Exposure System Verification
4.2. Comparison of Exposure Systems
4.3. Discussion on Future Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericsson. Ericsson Mobility Report November 2023; Mobility Reports; Ericsson: Stockholm, Sweden, 2023. [Google Scholar]
- Chandramouli, D.; Liebhart, R.; Pirskanen, J. 5G for the Connected World, 1st ed.; Wiley: Newark, NY, USA, 2019. [Google Scholar]
- Imran, I.M.A.; Heliot, H.F.; Sambo, S.Y.A.; Heliot, F. Low Electromagnetic Emission Wireless Network Technologies: 5G and Beyond; Institution of Engineering and Technology: London, UK, 2019. [Google Scholar]
- Wood, A.; Mate, R.; Karipidis, K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 606–613. [Google Scholar] [CrossRef]
- Hong, W.; Sim, C.Y.D. Microwave and Millimeter-Wave Antenna Design for 5G Smartphone Applications; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2023. [Google Scholar]
- IEC. Full Speed Ahead with 5G and 6G-”Live from the lab”-Young Professionals and IEC TC 106 Working in 5G, IoT, and 6G-Telstra Lab, Australia-Vodafone Lab, UK. Available online: https://www.iec.ch/blog/full-speed-ahead-5g-and-6g (accessed on 3 November 2023).
- Australian Communications and Media Authority. 5G and Aviation Services in Australia. Available online: https://www.acma.gov.au/5g-and-aviation-services-australia#_g-and-radio-altimeters-key-facts (accessed on 21 December 2023).
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Karipidis, K.; Mate, R.; Urban, D.; Tinker, R.; Wood, A. 5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 585–605. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef] [PubMed]
- Karipidis, K.; Urban, D.; Mate, R.; Tinker, R. Non-Ionising Radiation Protection in Australia; Australian Government: Yallambie, Australia, 2019. [Google Scholar]
- IEEE C95.1-2019; IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE: Piscataway, NJ, USA, 2019.
- Brzozek, C.; Karipidis, K. Community engagement programs on radiation and health: Addressing public concerns. Public Health Res. Pract. 2023, 33, e3332325. [Google Scholar] [CrossRef]
- ARPANSA. The Radiation Protection Standard for Limiting Exposure to Radiofrequency Fields—100 kHz to 300 GHz; Australian Government: Yallambie, Australia, 2021.
- Foroughimehr, N.; Vilagosh, Z.; Yavari, A.; Wood, A. The Effects of mmW and THz Radiation on Dry Eyes: A Finite-Difference Time-Domain (FDTD) Computational Simulation Using XFdtd. Sensors 2023, 23, 5853. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Watanabe, S.; Kojima, M.; Hata, I.; Wake, K.; Taki, M.; Sasaki, K.; Fujiwara, O.; Shiozawa, T. Computational verification of anesthesia effect on temperature variations in rabbit eyes exposed to 2.45 GHz microwave energy. Bioelectromagnetics 2006, 27, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Laakso, I. Assessment of the computational uncertainty of temperature rise and SAR in the eyes and brain under far-field exposure from 1 to 10 GHz. Phys. Med. Biol. 2009, 54, 3393. [Google Scholar] [CrossRef]
- Foroughimehr, N.; Vilagosh, Z.; Yavari, A.; Wood, A. The Impact of Base Cell Size Setup on the Finite Difference Time Domain Computational Simulation of Human Cornea Exposed to Millimeter Wave Radiation at Frequencies above 30 GHz. Sensors 2022, 22, 5924. [Google Scholar] [CrossRef]
- Foroughimehr, N.; Vilagosh, Z.; Wood, A.W. The reflectance of sepia melanin at THz frequencies. In Proceedings of the 2023 5th Australian Microwave Symposium (AMS), Melbourne, Australia, 16–17 February 2023; pp. 1–2. [Google Scholar]
- Vilagosh, Z.; Appadoo, D.; Foroughimehr, N.; Shams, R.; Sly, D.; Juodkazis, S.; Ivanova, E.; Wood, A.W. Tissue Characterization Using Synchrotron Radiation at 0.7 THz to 10.0 THz with Extended ATR Apparatus Techniques. Sensors 2022, 22, 8363. [Google Scholar] [CrossRef]
- Foroughimehr, N.; Vilagosh, Z.; Yavari, A.; Wood, A. Investigating the Impact of Synchrotron THz Radiation on the Corneal Hydration Using Synchrotron THz-Far Infrared Beamline. Sensors 2022, 22, 8261. [Google Scholar] [CrossRef]
- Khizhnyak, E.P.; Ziskin, M.C. Heating patterns in biological tissue phantoms caused by millimeter wave electromagnetic irradiation. IEEE Trans. Biomed. Eng. 1994, 41, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Kues, H.A.; D’Anna, S.A.; Osiander, R.; Green, W.R.; Monahan, J.C. Absence of ocular effects after either single or repeated exposure to 10 mW/cm2 from a 60 GHz CW source. Bioelectromagnetics 1999, 20, 463–473. [Google Scholar] [CrossRef]
- Kojima, M.; Suzuki, Y.; Tasaki, T.; Tatematsu, Y.; Mizuno, M.; Fukunari, M.; Sasaki, H. Clinical course of high-frequency millimeter-wave (162 GHz) induced ocular injuries and investigation of damage thresholds. J. Infrared Millim. Terahertz Waves 2020, 41, 834–845. [Google Scholar] [CrossRef]
- Kojima, M.; Suzuki, Y.; Tsai, C.Y.; Sasaki, K.; Wake, K.; Watanabe, S.; Taki, M.; Kamimura, Y.; Hirata, A.; Sasaki, K.; et al. Characteristics of ocular temperature elevations after exposure to quasi-and millimeter waves (18–40 GHz). J. Infrared Millim. Terahertz Waves 2015, 36, 390–399. [Google Scholar] [CrossRef]
- Kojima, M.; Tsai, C.Y.; Suzuki, Y.; Sasaki, K.; Tasaki, T.; Taki, M.; Watanabe, S.; Sasaki, H. Ocular response to millimeter wave exposure under different levels of humidity. J. Infrared Millim. Terahertz Waves 2019, 40, 574–584. [Google Scholar] [CrossRef]
- Kojima, M.; Tasaki, T.; Suzuki, Y.; Kamijo, T.; Hada, A.; Kik, A.; Ikehata, M.; Sasaki, H. Threshold for Millimeter-Wave (60 GHz)-Induced Ocular Injury. J. Infrared Millim. Terahertz Waves 2022, 43, 260–271. [Google Scholar] [CrossRef]
- Sasaki, K.; Sakai, T.; Nagaoka, T.; Wake, K.; Watanabe, S.; Kojima, M.; Hasanova, N.; Sasaki, H.; Sasaki, K.; Suzuki, Y.; et al. Dosimetry using a localized exposure system in the millimeter-wave band for in vivo studies on ocular effects. IEEE Trans. Microw. Theory Tech. 2014, 62, 1554–1564. [Google Scholar] [CrossRef]
- Kojima, M.; Hanazawa, M.; Yamashiro, Y.; Sasaki, H.; Watanabe, S.; Taki, M.; Suzuki, Y.; Hirata, A.; Kamimura, Y.; Sasaki, K. Acute ocular injuries caused by 60-GHz millimeter-wave exposure. Health Phys. 2009, 97, 212–218. [Google Scholar] [CrossRef]
- Ijima, E.; Kodera, S.; Hirata, A.; Hikage, T.; Matsumoto, A.; Ishitake, T.; Masuda, H. Excessive whole-body exposure to 28 GHz quasi-millimeter wave induces thermoregulation accompanied by a change in skin blood flow proportion in rats. Front. Public Health 2023, 11, 1225896. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Y. Anechoic and Reverberation Chambers: Theory, Design, and Measurements; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Qasem, N.A.A. Thermodynamic and Thermophysical Properties of Saline Water: Models, Correlations and Data for Desalination and Relevant Applications, 1st ed.; Springer Water Series; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Chen, W.; Zou, C.; Li, X.; Li, L. Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline water-based fluid. Int. J. Heat Mass Transf. 2017, 107, 264–270. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Wen, H.; Xia, Z.; Zhang, Z. Biomimetic human eyes in adaptive lenses with conductive gels. J. Mech. Behav. Biomed. Mater. 2023, 139, 105689. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Karipidis, K. Non-Ionizing Radiation Protection: Summary of Research and Policy Options; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Buchner, R.; Barthel, J.; Stauber, J. The dielectric relaxation of water between 0 °C and 35 °C. Chem. Phys. Lett. 1999, 306, 57–63. [Google Scholar] [CrossRef]
- IEEE C95.3-2002; IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz–300 GHz. IEEE: Piscataway, NJ, USA, 2002.
- Foroughimehr, N. Milliemter Wave Absorption by the Cornea. Ph.D. Thesis, Swinburne Univesity of Technology, Melbourne, Australia, 2023. [Google Scholar]
- Ziane, M.; Sauleau, R.; Zhadobov, M. Antenna/body coupling in the near-field at 60 GHz: Impact on the absorbed power density. Appl. Sci. 2020, 10, 7392. [Google Scholar] [CrossRef]
Study | Frequency Range | Antenna Shape or Type | Power Output Range | Temperature Measurement | Real-Time Visualisation of Heat Transportation |
---|---|---|---|---|---|
Khizhnyak et al. [22] | 37.5–53.57 GHz and 53.57–78.33 GHz | Horn (round and rectangular) antenna | 50 milliwatts (mW) | Infrared (IR) camera | Yes |
Kues et al. [23] | 60 GHz microwave source | Horn antenna + wave guide | 10 mW/cm2 | IR camera | No |
Kojima et al. [24] | 162 GHz gyrotron source | Spot-focus-type lens antenna | 60–600 mW/cm2 | Thermography camera | No |
Kojima et al. [25] | 18–26.5 GHz and 26.5–40 GHz Signal generator | Rectangular horn antenna | 200 mW/cm2 | Thermometer probe, and Microencapsulated thermochromic liquid crystals | Yes |
Kojima et al. [26] | 40 GHz Signal generator | Lens antenna | 200 mW/cm2 | Microencapsulated thermochromic liquid crystals, IR camera, and fluoroptic thermometer | Yes |
Kojima et al. [27] | 60 GHz Signal generator | Spot-focus-type lens antenna | 200–300 mW/cm2 (rabbits with open eye) 400 mW/cm2 (rabbits with closed eyes) | IR camera | Yes |
Sasaki et al. [28] | 26–95 GHz | Spot-focus-type lens antenna | 300 mW/cm2 | Numerical assessment and in vivo | |
Kojima et al. [29] | 60 GHz | Either a horn antenna or one of the two lens antennas (with diameters of 6 mm and 9 mm). | 475 mW/cm2 using the horn antenna and 1898 mW/cm2 with the lens antenna. | Thermography | No |
Ijima et al. [30] | 28 GHz | Horn lens antenna (conical) | 0–0.0237 mW/cm2. | Fiber-optic thermometers and Doppler blood flow meters | Yes |
Equipment | Technical Specifications | Frequency Range | Features, Additional Notes, and Comments |
---|---|---|---|
Antenna | A-infomw Spot-Focusing Lens Horn Antenna | 26–40 GHz | Wave guide: WR28 Polarisation: Linear |
Signal generator | HP 8673B Synthesised signal generator | 2–26 GHz | Max frequency: 26 GHz Minimum Frequency: 2 GHz Modulation: AM-FM-PULSE Max Output level: 8 dBm Min output level: −100 dBm Resolution: 1 kHz |
Amplifier | MI-WAVE 955 Series Power Amplifier | 26.5–31 GHz | Gain: 35∼40 dB Psat output: 43 dBm Input power for saturated output: 5–10 dBm Bias: 21 V∼24 V @ 5 A Input/Output: 2.92 mm(F) |
Power meter 1 | HP 436A | 100 kHz–110 GHz | Display readings in Watts, dBm or dB relative eliminating measurement conversion Peaking meter for analogue adjustments Cal factor to compensate each sensor for improved accuracy Power Range: −70 to +44 dBm Power Accuracy: ±0.5% Power Reference: Internal 50 MHz oscillator Type-N output |
Power meter 2 | HP Agilent Keysight E4416A EPM-P Series Single-Channel | Max. Frequency: depends on power sensor | Channels: 1 Max. power: depends on power sensor Measure: Average Peak |
IR thermal imaging camera | VEVOR (Resolution 240 × 180, 2.8′ Screen, −4 to 662F temperature range) | N/A | Thermal sensitivity ≤ 0.04C |
NaCl (grams) | Molarity (mM) | Salinity (%) |
---|---|---|
0.5 | ≈86 | ≈0.49% |
1 | ≈171 | ≈0.98% |
2.5 | ≈428 | ≈2.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foroughimehr, N.; Wood, A.; McKenzie, R.; Karipidis, K.; Yavari, A. Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies. Sensors 2024, 24, 1516. https://doi.org/10.3390/s24051516
Foroughimehr N, Wood A, McKenzie R, Karipidis K, Yavari A. Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies. Sensors. 2024; 24(5):1516. https://doi.org/10.3390/s24051516
Chicago/Turabian StyleForoughimehr, Negin, Andrew Wood, Ray McKenzie, Ken Karipidis, and Ali Yavari. 2024. "Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies" Sensors 24, no. 5: 1516. https://doi.org/10.3390/s24051516
APA StyleForoughimehr, N., Wood, A., McKenzie, R., Karipidis, K., & Yavari, A. (2024). Design and Implementation of a Specialised Millimetre-Wave Exposure System for Investigating the Radiation Effects of 5G and Future Technologies. Sensors, 24(5), 1516. https://doi.org/10.3390/s24051516