Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Optical Absorption
2.2. Fabrication of InGaAs FPAs
3. Results and Discussion
3.1. Quantum Efficiency (QE)
3.2. Responsivity Non-Uniformity
3.3. Dark Current Density and Dark Noise
3.4. Operability
3.5. Detectivity
3.6. Imagery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coussement, J.; Rouvié, A.; Oubensaid, E.H.; Huet, O.; Hamard, S.; Truffer, J.P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; et al. New developments on InGaAs focal plane array. Proc. SPIE 2014, 9070, 39–47. [Google Scholar]
- Li, X.; Gong, H.M.; Fang, J.X.; Shao, X.M.; Tang, H.J.; Huang, S.L.; Li, T.; Huang, Z.C. The development of InGaAs Short Wavelength Infrared Focal Plane Arrays with high performance. Infrared Phys. Technol. 2017, 80, 112–119. [Google Scholar] [CrossRef]
- Hansen, M.P.; Malchow, D.C. Overview of SWIR detectors, cameras, and applications. Proc. SPIE 2008, 6939, 94–104. [Google Scholar]
- Huang, S.; O’Grady, M.; Groppe, J.V.; Ettenberg, M.H.; Brubaker, R.M. A customizable commercial miniaturized 320 × 256 indium gallium arsenide short wave infrared camera. Proc. SPIE 2004, 5563, 118–129. [Google Scholar]
- Kim, M.S.; Delwiche, S.R.; Chao, K.L.; Garrido-Varo, A.; Pérez-Marín, D.; Lefcourt, A.M.; Chen, D.E. Visible to SWIR hyperspectral imaging for produce safety and quality evaluation. Sens. Instrum. Food Qual. Saf. 2011, 5, 155–164. [Google Scholar] [CrossRef]
- Turner, D.G.; Bakker, T.C.; Dixon, P.; Ettenberg, M.H. The Development of, and Applications for, Extended Response (0.7–1.7 μm) InGaAs Focal Plane Arrays. Proc. SPIE 2008, 6940, 1073–1080. [Google Scholar]
- Ettenberg, M.H.; Cohen, M.J.; Lange, M.J.; Dixon, P.; Olsen, G.H. A thin film indium gallium arsenide focal plane array for visible and near infrared hyperspectral imaging. In Proceedings of the 12th Annual Meeting of IEEE Lasers and Electro Optics Society, San Francisco, CA, USA, 8–11 November 1999; pp. 744–745. [Google Scholar]
- Martin, T.; Brubaker, R.; Dixon, P.; Gagliardi, M.A.; Sudol, T. 640 × 512 InGaAs focal plane array camera for visible and SWIR imaging. Proc. SPIE 2005, 5783, 12–20. [Google Scholar]
- Martin, T.; Dixon, P.; Gagliardi, M.A.; Masaun, N. 320 × 240 pixel InGaAs/InP focal plane array for short-wave infrared and isible light imaging. Proc. SPIE 2005, 5726, 85–91. [Google Scholar]
- Onat, B.M.; Huang, W.; Masaun, N.; Lange, M.; Ettenberg, M.H.; Dries, C. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging. Proc. SPIE 2007, 6542, 233–241. [Google Scholar]
- Getty, J.; Hadjiyska, E.; Acton, D.; Harris, S.; Starr, B.; Levy, A.; Wehner, J.; Taylor, S.; Hoffman, A. VIS/SWIR focal plane and detector development at Raytheon Instruments Performance Data and Future Developments at Raytheon. Proc. SPIE 2007, 6660, 82–93. [Google Scholar]
- Shao, X.M.; Yang, B.; Huang, S.; Wei, Y.; Chen, Y. 640 × 512 pixel InGaAs FPAs for short-wave infrared and visible light imaging. Proc. SPIE 2017, 10404, 62–69. [Google Scholar]
- Rouvié, A.; Reverchon, J.L.; Huet, O.; Djedidi, A.; Costard, E. InGaAs focal plane array developments at III-V Lab. Proc. SPIE 2012, 8353, 96–107. [Google Scholar]
- Yuan, H.; Meixell, M.; Zhang, J.W.; Bey, P.; Kimchi, J.; Kilmer, L.C. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies. Proc. SPIE 2012, 8353, 108–115. [Google Scholar]
- He, W.; Shao, X.M.; Ma, Y.J.; Cao, G.Q.; Yu, C.; Li, X.; Gong, H.M. Broadband high quantum efficiency InGaAs/InP focal plane arrays via high precision plasma thinning. Opt. Lett. 2019, 44, 6037–6040. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Z.; Ma, Y.J.; Gu, Y.; Chen, Y.; Yang, B.; Cheng, J.F.; Li, T.; Li, X.; Shao, X.M.; Gong, H.M. Mie-Type Surface Texture-Integrated Visible and Short-Wave Infrared InGaAs/InP Focal Plane Arrays. ACS Appl. Electron. Mater. 2020, 2, 2558–2564. [Google Scholar]
- Martin, T.J.; Cohen, M.; Cohen, J.; Dries, J.C.; Lange, M.J. InGaAs/InP focal plane arrays for visible light imaging. Proc. SPIE 2004, 5406, 38–45. [Google Scholar]
- Blessinger, M.A.; Groppe, J.V.; Sudol, T.M.; Battaglia, J.; Passe, J.; Stern, M.; Onat, B.M. Performance of high resolution visible-InGaAs imager for day/night vision. Proc. SPIE 2008, 6940, 229–237. [Google Scholar]
- Rouvié, A.; Huet, O.; Reverchon, J.L.; Robo, J.A.; Bois, P. 15 μm pixel-pitch VGA InGaAs module for very low background applications. Proc. SPIE 2011, 8176, 337–344. [Google Scholar]
- Fraenkel, A.; Berkowicz, E.; Bykov, L.; Dobromislin, R.; Vasserman, S. High Definition 10 μm Pitch InGaAs Detector with Asynchronous Laser Pulse Detection Mode. Proc. SPIE 2016, 9819, 7–14. [Google Scholar]
- Manda, S.; Matsumoto, R.; Saito, S.; Maruyama, S.; Minari, H.; Hirano, T.; Takachi, T.; Fujii, N.; Yamamoto, Y.; Zaizen, Y.; et al. High-definition Visible-SWIR InGaAs Image Sensor using Cu-Cu Bonding of III-V to Silicon Wafer. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 16–17. [Google Scholar]
- Emziane, M.; Nicholas, R.J. Optimization of InGaAs(P) photovoltaic cells lattice matched to InP. J. Appl. Phys. 2007, 101, 054503. [Google Scholar] [CrossRef]
- Joshi, A.; Datta, S. Low-noise UV-to-SWIR broadband photodiodes for large-format focal plane array sensors. Proc. SPIE 2012, 8385, 38–49. [Google Scholar]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- EMVA 1288; Standard for Characterization of Image Sensors and Cameras. European Machine Vision Association: Barcelona, Spain, 2016.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, W.; Ye, H.; Huang, R.; Liu, C.; Zhao, W.; Shi, Y. Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal. Sensors 2024, 24, 1521. https://doi.org/10.3390/s24051521
Zhang J, Wang W, Ye H, Huang R, Liu C, Zhao W, Shi Y. Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal. Sensors. 2024; 24(5):1521. https://doi.org/10.3390/s24051521
Chicago/Turabian StyleZhang, Jiaxin, Wei Wang, Haifeng Ye, Runyu Huang, Chen Liu, Weilin Zhao, and Yanli Shi. 2024. "Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal" Sensors 24, no. 5: 1521. https://doi.org/10.3390/s24051521
APA StyleZhang, J., Wang, W., Ye, H., Huang, R., Liu, C., Zhao, W., & Shi, Y. (2024). Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal. Sensors, 24(5), 1521. https://doi.org/10.3390/s24051521