Sensors for Robots
1. Introduction
2. Overview of Contribution
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Chen, Z.; Qiao, X.; Wu, P.; Zhang, T.; Hong, T.; Fang, L. Unmanned Aerial Vehicle (UAV) Robot Microwave Imaging Based on Multi-Path Scattering Model. Sensors 2022, 22, 8736.
- Liu, L.; Guo, X.; Fang, Y. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera. Sensors 2022, 22, 9867.
- Yang, Y.-R.; Kang, Q.; She, R. The Effective Coverage of Homogeneous Teams with Radial Attenuation Models. Sensors 2023, 23, 350.
- Imtiaz, M.B.; Qiao, Y.; Lee, B. Prehensile and Non-Prehensile Robotic Pick-and-Place of Objects in Clutter Using Deep Reinforcement Learning. Sensors 2023, 23, 1513.
- Shi, X.; Li, M.; Dong, Y.; Feng, S. Research on Surface Tracking and Constant Force Control of a Grinding Robot. Sensors 2023, 23, 4702.
- Li, M.; Qiu, J.; Li, R.; Liu, Y.; Du, Y.; Liu, Y.; Sun, M.; Zhao, X.; Zhao, Q. Robotic Intracellular Pressure Measurement Using Micropipette Electrode. Sensors 2023, 23, 4973.
- Alguacil-Diego, I.M.; Cuesta-Gómez, A.; Pont, D.; Carrillo, J.; Espinosa, P.; Sánchez-Urán, M.A.; Ferre, M. A Novel Active Device for Shoulder Rotation Based on Force Control. Sensors 2023, 23, 6158.
- Shu, J.; Wang, J.; Cheng, K.C.-C.; Yeung, L.-F.; Li, Z.; Tong, R.K.-y. An End-to-End Dynamic Posture Perception Method for Soft Actuators Based on Distributed Thin Flexible Porous Piezoresistive Sensors. Sensors 2023, 23, 6189.
- Rostkowska, M.; Skrzypczyński, P. Optimizing Appearance-Based Localization with Catadioptric Cameras: Small-Footprint Models for Real-Time Inference on Edge Devices. Sensors 2023, 23, 6485.
- Weidenbach, M.; Laue, T.; Frese, U. Transparency-Aware Segmentation of Glass Objects to Train RGB-Based Pose Estimators. Sensors 2024, 24, 432.
References
- Dzedzickis, A.; Subačiūtė-Žemaitienė, J.; Šutinys, E.; Samukaitė-Bubnienė, U.; Bučinskas, V. Advanced applications of industrial robotics: New trends and possibilities. Appl. Sci. 2021, 12, 135. [Google Scholar] [CrossRef]
- Liu, H.; Stoll, N.; Junginger, S.; Thurow, K. Mobile robot for life science automation. Int. J. Adv. Robot. Syst. 2013, 10, 288. [Google Scholar] [CrossRef]
- Schina, D.; Esteve-González, V.; Usart, M. An overview of teacher training programs in educational robotics: Characteristics, best practices and recommendations. Educ. Inf. Technol. 2021, 26, 2831–2852. [Google Scholar] [CrossRef]
- Dupont, P.; Nelson, B.; Goldfarb, M.; Hannaford, B.; Menciassi, A.; Yang, G. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 2021, 6, eabi8017. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, T. A review of recent research in social robotics. Curr. Opin. Psychol. 2020, 36, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gans, N.; Rogers, J. Cooperative multirobot systems for military applications. Curr. Robot. Rep. 2021, 2, 105–111. [Google Scholar] [CrossRef]
- Pagliarini, L.; Lund, H. The future of Robotics Technology. J. Robotics Netw. Artif. Life 2017, 3, 270–273. [Google Scholar] [CrossRef]
- Karreman, D.; Ludden, G.; Evers, V. Beyond R2D2: Designing multimodal interaction behavior for robot-specific morphology. ACM Trans. Hum.-Robot Interact. (THRI) 2019, 8, 1–32. [Google Scholar] [CrossRef]
- Regtien, P. Sensors for applications in robotics. Sens. Actuators 1986, 10, 195–218. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, H.; Guo, S.; Wang, Y.; Cui, J.; Ma, Y.; Liu, Y.; Liu, X.; Feng, J.; Li, Y. A novel noncontact detection method of surgeon’s operation for a master-slave endovascular surgery robot. Med. Biol. Eng. Comput. 2020, 58, 871–885. [Google Scholar] [CrossRef]
- Lambeta, M.; Chou, P.; Tian, S.; Yang, B.; Maloon, B.; Most, V.; Calandra, R. Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robot. Autom. Lett. 2020, 5, 3838–3845. [Google Scholar] [CrossRef]
- Raril, C.; Manjunatha, J. Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J. Anal. Sci. Technol. 2020, 11, 3. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Luo, X. An overview of calibration technology of industrial robots. IEEE/CAA J. Autom. Sin. 2021, 8, 23–36. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Sun, W.; Zhou, S.; He, M. Preparation of gradient hydrogel for pressure sensing by combining freezing and directional diffusion processes. Chem. Eng. J. 2023, 451, 138335. [Google Scholar] [CrossRef]
- Krishnamurthi, R.; Kumar, A.; Gopinathan, D.; Nayyar, A.; Qureshi, B. An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors 2020, 20, 6076. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, G.; Zhang, F.; Tang, W.; Yang, J.; Zhu, L. A review of flexible force sensors for human health monitoring. J. Adv. Res. 2020, 26, 53–68. [Google Scholar] [CrossRef]
- Halwani, M.; Ayyad, A.; AbuAssi, L.; Abdulrahman, Y.; Almaskari, F.; Hassanin, H.; Zweiri, Y. A Novel Vision-Based Multi-Functional Sensor for Normality and Position Measurements in Precise Robotic Manufacturing. Precis. Eng. 2024, 88, 367–381. [Google Scholar] [CrossRef]
- Netzer, O.; Heimler, B.; Shur, A.; Behor, T.; Amedi, A. Backward spatial perception can be augmented through a novel visual-to-auditory sensory substitution algorithm. Sci. Rep. 2021, 11, 11944. [Google Scholar] [CrossRef]
- Ali, A.; Abouelghar, M.; Belal, A.; Saleh, N.; Yones, M.; Selim, A.; Savin, I. Crop yield prediction using multi sensors remote sensing. Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar]
- Alamzadeh, I.; Alexandropoulos, G.; Shlezinger, N.; Imani, M. A reconfigurable intelligent surface with integrated sensing capability. Sci. Rep. 2021, 11, 20737. [Google Scholar] [CrossRef] [PubMed]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Uță, C.; Dijmărescu, I. Sustainable, smart, and sensing technologies for cyber-physical manufacturing systems: A systematic literature review. Sustainability 2021, 13, 5495. [Google Scholar] [CrossRef]
- Landaluce, H.; Arjona, L.; Perallos, A.; Falcone, F.; Angulo, I.; Muralter, F. A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors 2020, 20, 2495. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Li, Y.; Sun, J.; Zhou, D.; Zhang, Q. Multi-sensor fusion for body sensor network in medical human–robot interaction scenario. Inf. Fusion 2020, 57, 15–26. [Google Scholar] [CrossRef]
- Sanchez-Ibanez, J.; Perez-del-Pulgar, C.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Petráček, P.; Krátký, V.; Petrlík, M.; Báča, T.; Kratochvíl, R.; Saska, M. Large-scale exploration of cave environments by unmanned aerial vehicles. IEEE Robot. Autom. Lett. 2021, 6, 7596–7603. [Google Scholar] [CrossRef]
- Sánchez, P.; Papaelias, M.; Márquez, F. Autonomous underwater vehicles: Instrumentation and measurements. IEEE Instrum. Meas. Mag. 2020, 23, 105–114. [Google Scholar] [CrossRef]
- Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.; Edel, J. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Y.; Yin, Z.; Wang, H.; Zhang, Y. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184–211. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Zhu, W. Metasurface micro/nano-optical sensors: Principles and applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, M.; Zhao, Q. Sensors for Robots. Sensors 2024, 24, 1854. https://doi.org/10.3390/s24061854
Zhao X, Sun M, Zhao Q. Sensors for Robots. Sensors. 2024; 24(6):1854. https://doi.org/10.3390/s24061854
Chicago/Turabian StyleZhao, Xin, Mingzhu Sun, and Qili Zhao. 2024. "Sensors for Robots" Sensors 24, no. 6: 1854. https://doi.org/10.3390/s24061854
APA StyleZhao, X., Sun, M., & Zhao, Q. (2024). Sensors for Robots. Sensors, 24(6), 1854. https://doi.org/10.3390/s24061854