Appendix A
Table A1.
Class 11 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Table A1.
Class 11 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Method | r (cm) | PGI ↑ | PGU ↓ | RISj | RISv | RISb | ROS | RRS |
---|
CAM | 2.5 | 2.080 ± 0.394 | 1.507 ± 0.268 | 174.133 ± 16.946 | 1288.370 ± 138.912 | 14.424 ± 1.202 | 1,702,553.834 ± 1,116,223.129 | 285.874 ± 46.673 |
5 | 3.142 ± 0.514 | 2.547 ± 0.394 | 137.460 ± 11.303 | 968.090 ± 86.855 | 12.924 ± 0.964 | 2,530,301.100 ± 2,226,508.985 | 264.838 ± 33.044 |
10 | 4.109 ± 0.569 | 3.807 ± 0.489 | 91.225 ± 6.774 | 654.886 ± 53.711 | 10.877 ± 0.741 | 971,050.496 ± 676,047.094 | 222.611 ± 20.795 |
20 | 5.722 ± 0.616 | 5.294 ± 0.541 | 52.854 ± 3.473 | 380.917 ± 30.189 | 9.210 ± 0.556 | 355,153.157 ± 272,318.174 | 180.486 ± 11.691 |
40 | 10.859 ± 0.811 | 7.826 ± 0.549 | 28.373 ± 2.139 | 190.976 ± 18.548 | 7.112 ± 0.416 | 334,731.175 ± 221,923.029 | 132.782 ± 8.488 |
80 | 15.059 ± 1.023 | 10.787 ± 0.679 | 12.199 ± 1.408 | 76.734 ± 10.911 | 3.764 ± 0.330 | 340,629.702 ± 291,218.222 | 92.569 ± 8.165 |
Grad-CAM | 2.5 | 2.080 ± 0.394 | 1.507 ± 0.268 | 174.133 ± 16.946 | 1288.371 ± 138.912 | 14.424 ± 1.202 | 1,702,554.201 ± 1,116,223.411 | 285.874 ± 46.673 |
5 | 3.142 ± 0.514 | 2.547 ± 0.394 | 137.460 ± 11.303 | 968.090 ± 86.855 | 12.924 ± 0.964 | 2,530,301.513 ± 2,226,509.277 | 264.838 ± 33.044 |
10 | 4.109 ± 0.569 | 3.807 ± 0.489 | 91.225 ± 6.774 | 654.886 ± 53.711 | 10.877 ± 0.741 | 971,050.337 ± 676,047.046 | 222.611 ± 20.795 |
20 | 5.722 ± 0.616 | 5.294 ± 0.541 | 52.854 ± 3.473 | 380.917 ± 30.189 | 9.210 ± 0.556 | 355,153.184 ± 272,318.220 | 180.486 ± 11.691 |
40 | 10.859 ± 0.811 | 7.826 ± 0.549 | 28.373 ± 2.139 | 190.976 ± 18.548 | 7.112 ± 0.416 | 334,731.302 ± 221,923.109 | 132.782 ± 8.488 |
80 | 15.059 ± 1.023 | 10.787 ± 0.679 | 12.199 ± 1.408 | 76.734 ± 10.911 | 3.764 ± 0.330 | 340,629.723 ± 291,218.252 | 92.569 ± 8.165 |
Random | 2.5 | 2.190 ± 0.410 | 1.831 ± 0.306 | 1228.105 ± 43.441 | 9627.812 ± 502.591 | 95.762 ± 3.630 | 20,728,354.210 ± 14,139,843.294 | 3205.744 ± 333.826 |
5 | 3.559 ± 0.577 | 3.165 ± 0.445 | 598.011 ± 21.123 | 4555.435 ± 238.309 | 50.612 ± 1.843 | 13,986,453.073 ± 9,801,817.526 | 1617.393 ± 160.022 |
10 | 4.613 ± 0.664 | 4.905 ± 0.542 | 300.288 ± 11.303 | 2300.006 ± 112.759 | 31.848 ± 1.120 | 3,835,957.191 ± 2,481,844.039 | 940.518 ± 87.484 |
20 | 6.173 ± 0.643 | 6.357 ± 0.596 | 144.791 ± 5.982 | 1069.703 ± 56.382 | 23.135 ± 0.976 | 1,563,644.666 ± 1,072,148.002 | 580.579 ± 46.894 |
40 | 12.232 ± 0.820 | 9.155 ± 0.654 | 67.294 ± 3.949 | 386.528 ± 35.895 | 14.813 ± 0.768 | 1,187,301.059 ± 987,974.000 | 350.415 ± 26.835 |
80 | 14.989 ± 1.008 | 13.253 ± 0.852 | 27.610 ± 2.828 | 115.425 ± 19.128 | 6.621 ± 0.418 | 978,432.004 ± 1,211,946.037 | 266.365 ± 27.954 |
Table A2.
Class 26 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Table A2.
Class 26 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Method | r (cm) | PGI ↑ | PGU ↓ | RISj | RISv | RISb | ROS | RRS |
---|
CAM | 2.5 | 0.002 ± 0.001 | 0.002 ± 0.001 | 38.783 ± 1.685 | 241.329 ± 10.033 | 3.504 ± 0.112 | 3,793,568.715 ± 599,734.044 | 137.439 ± 4.602 |
5 | 0.003 ± 0.001 | 0.003 ± 0.001 | 35.563 ± 1.469 | 226.272 ± 8.821 | 3.447 ± 0.103 | 4,244,155.156 ± 614,303.198 | 130.751 ± 3.800 |
10 | 0.005 ± 0.002 | 0.006 ± 0.003 | 29.652 ± 1.165 | 191.308 ± 7.224 | 3.452 ± 0.110 | 4,307,133.768 ± 667,017.130 | 116.767 ± 3.276 |
20 | 0.010 ± 0.005 | 0.010 ± 0.004 | 22.343 ± 0.782 | 140.125 ± 5.027 | 3.698 ± 0.108 | 3,926,629.242 ± 573,923.634 | 114.482 ± 3.087 |
40 | 0.051 ± 0.040 | 0.036 ± 0.014 | 15.016 ± 0.481 | 91.628 ± 3.543 | 3.793 ± 0.111 | 2,119,077.311 ± 355,383.073 | 119.608 ± 2.883 |
80 | 2.281 ± 0.299 | 0.938 ± 0.140 | 11.679 ± 0.347 | 45.246 ± 2.827 | 3.324 ± 0.090 | 339,790.687 ± 75,217.805 | 110.699 ± 2.141 |
Grad-CAM | 2.5 | 0.002 ± 0.001 | 0.002 ± 0.001 | 38.783 ± 1.685 | 241.329 ± 10.033 | 3.504 ± 0.112 | 3,793,569.048 ± 599,734.059 | 137.439 ± 4.602 |
5 | 0.003 ± 0.001 | 0.003 ± 0.001 | 35.563 ± 1.469 | 226.272 ± 8.821 | 3.447 ± 0.103 | 4,244,156.522 ± 614,303.356 | 130.751 ± 3.800 |
10 | 0.005 ± 0.002 | 0.006 ± 0.003 | 29.652 ± 1.165 | 191.308 ± 7.224 | 3.452 ± 0.110 | 4,307,133.975 ± 667,017.145 | 116.767 ± 3.276 |
20 | 0.010 ± 0.005 | 0.010 ± 0.004 | 22.343 ± 0.782 | 140.125 ± 5.027 | 3.698 ± 0.108 | 3,926,629.059 ± 573,923.586 | 114.482 ± 3.087 |
40 | 0.051 ± 0.040 | 0.036 ± 0.014 | 15.016 ± 0.481 | 91.628 ± 3.543 | 3.793 ± 0.111 | 2,119,077.265 ± 355,383.079 | 119.608 ± 2.883 |
80 | 2.281 ± 0.299 | 0.938 ± 0.140 | 11.679 ± 0.347 | 45.246 ± 2.827 | 3.324 ± 0.090 | 339,790.661 ± 75,217.791 | 110.699 ± 2.141 |
Random | 2.5 | 0.002 ± 0.001 | 0.002 ± 0.001 | 1233.418 ± 22.376 | 7891.926 ± 206.386 | 97.067 ± 1.616 | 93,264,563.501 ± 12,716,437.799 | 5008.974 ± 133.687 |
5 | 0.003 ± 0.002 | 0.003 ± 0.001 | 619.974 ± 10.867 | 3948.918 ± 101.998 | 54.711 ± 0.727 | 63,286,627.152 ± 9,322,027.632 | 2557.063 ± 64.789 |
10 | 0.006 ± 0.002 | 0.005 ± 0.002 | 312.310 ± 5.332 | 1958.503 ± 50.638 | 35.273 ± 0.333 | 42,392,862.818 ± 6,446,239.434 | 1393.590 ± 32.140 |
20 | 0.012 ± 0.005 | 0.010 ± 0.004 | 156.615 ± 2.673 | 966.698 ± 25.445 | 26.557 ± 0.193 | 29,527,933.778 ± 4,113,487.016 | 864.778 ± 18.918 |
40 | 0.080 ± 0.055 | 0.060 ± 0.027 | 77.913 ± 1.346 | 454.485 ± 13.903 | 19.684 ± 0.241 | 9,244,726.238 ± 1,352,133.114 | 627.195 ± 13.200 |
80 | 5.474 ± 0.334 | 1.149 ± 0.176 | 35.110 ± 0.858 | 149.132 ± 7.404 | 8.684 ± 0.145 | 2,129,144.307 ± 407,137.423 | 419.232 ± 8.483 |
Table A3.
Class 32 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Table A3.
Class 32 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Method | r (cm) | PGI ↑ | PGU ↓ | RISj | RISv | RISb | ROS | RRS |
---|
CAM | 2.5 | 0.530 ± 0.172 | 0.275 ± 0.113 | 104.752 ± 12.666 | 567.154 ± 63.481 | 7.991 ± 1.036 | 2,916,268.239 ± 1,006,355.218 | 150.627 ± 22.877 |
5 | 1.923 ± 0.466 | 0.469 ± 0.140 | 100.686 ± 9.080 | 547.544 ± 50.258 | 8.872 ± 0.831 | 2,155,297.199 ± 768,443.139 | 136.450 ± 18.700 |
10 | 6.421 ± 0.793 | 1.169 ± 0.229 | 89.387 ± 6.276 | 492.629 ± 39.847 | 10.145 ± 0.645 | 1,787,187.499 ± 738,937.270 | 122.012 ± 13.391 |
20 | 13.318 ± 0.765 | 2.366 ± 0.344 | 66.464 ± 5.372 | 352.318 ± 34.570 | 10.860 ± 0.728 | 836,212.856 ± 204,359.147 | 127.161 ± 9.837 |
40 | 18.903 ± 0.679 | 4.338 ± 0.438 | 27.222 ± 2.617 | 124.864 ± 14.660 | 6.080 ± 0.462 | 628,225.894 ± 157,229.139 | 100.372 ± 6.547 |
80 | 21.380 ± 0.637 | 10.536 ± 0.567 | 13.050 ± 1.496 | 53.424 ± 8.608 | 3.111 ± 0.243 | 314,147.370 ± 133,974.310 | 77.798 ± 5.265 |
Grad-CAM | 2.5 | 0.530 ± 0.172 | 0.275 ± 0.113 | 104.752 ± 12.666 | 567.154 ± 63.481 | 7.991 ± 1.036 | 2,916,267.512 ± 1,006,355.183 | 150.627 ± 22.877 |
5 | 1.923 ± 0.466 | 0.469 ± 0.140 | 100.686 ± 9.080 | 547.544 ± 50.258 | 8.872 ± 0.831 | 2,155,296.259 ± 768,443.051 | 136.450 ± 18.700 |
10 | 6.421 ± 0.793 | 1.169 ± 0.229 | 89.387 ± 6.276 | 492.629 ± 39.847 | 10.145 ± 0.645 | 1,787,187.829 ± 738,937.896 | 122.012 ± 13.391 |
20 | 13.318 ± 0.765 | 2.366 ± 0.344 | 66.464 ± 5.372 | 352.318 ± 34.570 | 10.860 ± 0.728 | 836,212.707 ± 204,359.110 | 127.161 ± 9.837 |
40 | 18.903 ± 0.679 | 4.338 ± 0.438 | 27.222 ± 2.617 | 124.864 ± 14.660 | 6.080 ± 0.462 | 628,225.943 ± 157,229.158 | 100.372 ± 6.547 |
80 | 21.380 ± 0.637 | 10.536 ± 0.567 | 13.050 ± 1.496 | 53.424 ± 8.608 | 3.111 ± 0.243 | 314,147.317 ± 133,974.305 | 77.798 ± 5.265 |
Random | 2.5 | 0.516 ± 0.169 | 0.402 ± 0.140 | 1171.479 ± 26.522 | 7546.971 ± 238.181 | 92.114 ± 2.274 | 63,030,515.690 ± 17,269,283.238 | 2668.959 ± 142.801 |
5 | 1.318 ± 0.333 | 0.928 ± 0.225 | 580.844 ± 13.855 | 3727.449 ± 119.082 | 51.361 ± 1.150 | 35,297,240.144 ± 10,033,888.566 | 1360.739 ± 71.238 |
10 | 4.401 ± 0.625 | 2.923 ± 0.430 | 286.405 ± 6.934 | 1781.205 ± 57.356 | 32.552 ± 0.640 | 11,237,060.760 ± 3,678,599.967 | 688.543 ± 34.206 |
20 | 11.434 ± 0.744 | 6.970 ± 0.681 | 139.891 ± 3.732 | 819.171 ± 35.888 | 23.906 ± 0.509 | 2,949,464.762 ± 1,189,151.206 | 383.922 ± 18.093 |
40 | 17.962 ± 0.631 | 12.742 ± 0.789 | 66.049 ± 2.985 | 381.788 ± 25.718 | 16.294 ± 0.718 | 1,293,045.700 ± 455,084.066 | 260.787 ± 17.520 |
80 | 20.176 ± 0.610 | 19.286 ± 0.592 | 22.288 ± 2.462 | 147.523 ± 15.526 | 6.688 ± 0.579 | 978,000.924 ± 471,660.208 | 191.267 ± 22.531 |
Table A4.
Class 9 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Table A4.
Class 9 tabular data: ↑ indicates that higher values are better, while ↓ indicates that lower values are optimal.
Method | r (cm) | PGI ↑ | PGU ↓ | RISj | RISv | RISb | ROS | RRS |
---|
CAM | 2.5 | 1.446 ± 0.299 | 0.834 ± 0.156 | 139.642 ± 9.088 | 859.375 ± 59.025 | 10.975 ± 0.749 | 2,813,109.184 ± 1,254,700.809 | 152.976 ± 8.557 |
5 | 2.985 ± 0.499 | 1.811 ± 0.280 | 112.662 ± 6.406 | 693.715 ± 42.527 | 9.969 ± 0.545 | 1,667,239.107 ± 838,594.507 | 133.983 ± 6.921 |
10 | 6.648 ± 0.727 | 4.144 ± 0.451 | 75.351 ± 4.038 | 453.420 ± 27.108 | 8.299 ± 0.409 | 825,855.283 ± 303,557.804 | 107.961 ± 5.679 |
20 | 10.697 ± 0.786 | 6.490 ± 0.494 | 46.355 ± 2.759 | 260.949 ± 18.162 | 7.391 ± 0.375 | 518,198.588 ± 209,846.956 | 94.920 ± 5.303 |
40 | 13.535 ± 0.703 | 8.259 ± 0.508 | 24.799 ± 1.502 | 127.559 ± 9.371 | 5.708 ± 0.299 | 516,925.509 ± 228,941.576 | 86.767 ± 4.868 |
80 | 14.963 ± 0.661 | 9.610 ± 0.488 | 11.064 ± 1.075 | 57.528 ± 6.981 | 3.150 ± 0.150 | 611,673.611 ± 310,288.379 | 86.007 ± 4.309 |
Grad-CAM | 2.5 | 1.446 ± 0.299 | 0.834 ± 0.156 | 139.642 ± 9.088 | 859.375 ± 59.025 | 10.975 ± 0.749 | 2,813,108.561 ± 1,254,700.783 | 152.976 ± 8.557 |
5 | 2.985 ± 0.499 | 1.811 ± 0.280 | 112.662 ± 6.406 | 693.715 ± 42.527 | 9.969 ± 0.545 | 1,667,238.830 ± 838,594.559 | 133.983 ± 6.921 |
10 | 6.648 ± 0.727 | 4.144 ± 0.451 | 75.351 ± 4.038 | 453.420 ± 27.108 | 8.299 ± 0.409 | 825,854.822 ± 303,557.678 | 107.961 ± 5.679 |
20 | 10.697 ± 0.786 | 6.490 ± 0.494 | 46.355 ± 2.759 | 260.949 ± 18.162 | 7.391 ± 0.375 | 518,198.555 ± 209,846.916 | 94.920 ± 5.303 |
40 | 13.535 ± 0.703 | 8.259 ± 0.508 | 24.799 ± 1.502 | 127.559 ± 9.371 | 5.708 ± 0.299 | 516,925.478 ± 228,941.539 | 86.767 ± 4.868 |
80 | 14.963 ± 0.661 | 9.610 ± 0.488 | 11.064 ± 1.075 | 57.528 ± 6.981 | 3.150 ± 0.150 | 611,673.499 ± 310,288.287 | 86.007 ± 4.309 |
Random | 2.5 | 1.279 ± 0.265 | 1.340 ± 0.251 | 1154.662 ± 32.520 | 7879.336 ± 286.308 | 93.075 ± 2.396 | 48,749,279.991 ± 19,674,016.058 | 2113.066 ± 106.944 |
5 | 2.638 ± 0.426 | 3.309 ± 0.493 | 559.807 ± 17.176 | 3827.702 ± 145.161 | 50.903 ± 1.297 | 19,522,191.192 ± 8,735,689.839 | 1025.301 ± 50.038 |
10 | 6.366 ± 0.634 | 6.861 ± 0.695 | 275.334 ± 9.421 | 1830.920 ± 78.622 | 32.519 ± 1.405 | 7,999,255.135 ± 3,838,244.128 | 565.638 ± 31.075 |
20 | 9.807 ± 0.722 | 9.956 ± 0.719 | 134.102 ± 5.852 | 853.467 ± 42.655 | 23.369 ± 1.122 | 2,254,755.568 ± 1,106,476.034 | 362.369 ± 26.496 |
40 | 12.680 ± 0.703 | 12.389 ± 0.691 | 69.849 ± 3.386 | 418.035 ± 24.775 | 16.281 ± 0.575 | 1,252,448.556 ± 804,210.707 | 272.395 ± 19.120 |
80 | 16.093 ± 0.710 | 13.919 ± 0.640 | 25.073 ± 1.905 | 124.852 ± 12.648 | 6.706 ± 0.273 | 808,021.756 ± 771,280.581 | 205.893 ± 14.800 |
Figure A1.
Evaluation metric outcomes for ‘checking time on watch’ (Class 32), showing CAM (blue), Grad-CAM (orange), and the random (green) methods for (a) PGI, (b) PGU, (c) RISb, (d) RISj, (e) RISv, (f) ROS, and (g) RRS. Despite increasing perturbation magnitudes, CAM and Grad-CAM exhibit only marginally better performance compared with the random method in terms of PGI. This suggests that the expected correlation between increasing the perturbation magnitude of important features and significant changes in prediction output may not consistently apply to this particular case. Conversely, for PGU, CAM and Grad-CAM demonstrate more effective identification of unimportant features compared with the random method. As perturbation magnitude increases, the random method results in a significantly larger discrepancy between the prediction probabilities of the original and perturbed data.
Figure A1.
Evaluation metric outcomes for ‘checking time on watch’ (Class 32), showing CAM (blue), Grad-CAM (orange), and the random (green) methods for (a) PGI, (b) PGU, (c) RISb, (d) RISj, (e) RISv, (f) ROS, and (g) RRS. Despite increasing perturbation magnitudes, CAM and Grad-CAM exhibit only marginally better performance compared with the random method in terms of PGI. This suggests that the expected correlation between increasing the perturbation magnitude of important features and significant changes in prediction output may not consistently apply to this particular case. Conversely, for PGU, CAM and Grad-CAM demonstrate more effective identification of unimportant features compared with the random method. As perturbation magnitude increases, the random method results in a significantly larger discrepancy between the prediction probabilities of the original and perturbed data.
Figure A2.
Evaluation metric outcomes for ‘clapping’ (Class 9), showing CAM (blue), Grad-CAM (orange), and the random (green) methods for (a) PGI, (b) PGU, (c) RISb, (d) RISj, (e) RISv, (f) ROS, and (g) RRS. Similar to class 32, the PGI results for class 9 show only a slight difference in performance between CAM and Grad-CAM versus the random method, even as perturbation magnitude increases. The PGU results still echo those in class 32, with CAM and Grad-CAM outperforming the random method in distinguishing unimportant features.
Figure A2.
Evaluation metric outcomes for ‘clapping’ (Class 9), showing CAM (blue), Grad-CAM (orange), and the random (green) methods for (a) PGI, (b) PGU, (c) RISb, (d) RISj, (e) RISv, (f) ROS, and (g) RRS. Similar to class 32, the PGI results for class 9 show only a slight difference in performance between CAM and Grad-CAM versus the random method, even as perturbation magnitude increases. The PGU results still echo those in class 32, with CAM and Grad-CAM outperforming the random method in distinguishing unimportant features.
Appendix B. Sample Data Instances and Their Corresponding CAM and Grad-CAM Scores (Normalized)
Table A5.
Sample from class 9. k denotes body point number.
Table A5.
Sample from class 9. k denotes body point number.
k | CAM | Grad-CAM |
---|
1 | 0.10499927 | 0.10499939 |
2 | 0.8457103 | 0.84571093 |
3 | 0.86337245 | 0.8633743 |
4 | 0.14498976 | 0.14498973 |
5 | 1.0 | 1.0 |
6 | 0.6217559 | 0.6217579 |
7 | 0.5937777 | 0.5937787 |
8 | 0.7676569 | 0.7676586 |
9 | 0.96693885 | 0.9669416 |
10 | 0.71324295 | 0.71324545 |
11 | 0.7423911 | 0.74239343 |
12 | 0.67857283 | 0.6785746 |
13 | 0.26158667 | 0.26158726 |
14 | 0.08999933 | 0.08999972 |
15 | 0.02405946 | 0.02405963 |
16 | 0.0 | 0.0 |
17 | 0.23806588 | 0.23806643 |
18 | 0.0483454 | 0.04834554 |
19 | 0.02031745 | 0.02031763 |
20 | 0.0140839 | 0.01408408 |
21 | 0.9171762 | 0.91717803 |
22 | 0.49637738 | 0.4963787 |
23 | 0.57773083 | 0.57773197 |
24 | 0.47685906 | 0.47686023 |
25 | 0.3491272 | 0.3491279 |
Table A6.
Sample from class 11. k denotes body point number.
Table A6.
Sample from class 11. k denotes body point number.
k | CAM | Grad-CAM |
---|
1 | 0.4192264 | 0.41922605 |
2 | 0.4485402 | 0.4485402 |
3 | 0.484537 | 0.484536 |
4 | 0.3869853 | 0.38698477 |
5 | 0.40052295 | 0.40052223 |
6 | 0.25756067 | 0.2575602 |
7 | 0.24608475 | 0.24608456 |
8 | 0.14658104 | 0.14658089 |
9 | 0.6106867 | 0.610686 |
10 | 0.7591647 | 0.75916386 |
11 | 1.0 | 1.0 |
12 | 0.69097036 | 0.69096994 |
13 | 0.33305895 | 0.3330585 |
14 | 0.19402055 | 0.19402048 |
15 | 0.0 | 0.0 |
16 | 0.08237603 | 0.08237588 |
17 | 0.37931275 | 0.3793123 |
18 | 0.18730809 | 0.18730754 |
19 | 0.04533133 | 0.04533128 |
20 | 0.07244555 | 0.07244562 |
21 | 0.47519997 | 0.47519904 |
22 | 0.11682785 | 0.11682767 |
23 | 0.23002054 | 0.23002037 |
24 | 0.72968245 | 0.7296809 |
25 | 0.8752001 | 0.87519866 |
Table A7.
Sample from class 26. k denotes body point number.
Table A7.
Sample from class 26. k denotes body point number.
k | CAM | Grad-CAM |
---|
1 | 0.6775505 | 0.67755353 |
2 | 0.8287168 | 0.8287187 |
3 | 1.0 | 1.0 |
4 | 0.7715871 | 0.77158725 |
5 | 0.7818266 | 0.78182703 |
6 | 0.72055995 | 0.72056246 |
7 | 0.77830803 | 0.7783087 |
8 | 0.3176544 | 0.31765595 |
9 | 0.72087973 | 0.72088116 |
10 | 0.76808375 | 0.76808643 |
11 | 0.6013477 | 0.6013488 |
12 | 0.34084404 | 0.3408448 |
13 | 0.7855472 | 0.78554976 |
14 | 0.6986992 | 0.6986986 |
15 | 0.44396198 | 0.44396254 |
16 | 0.35180664 | 0.35180822 |
17 | 0.7808226 | 0.78082335 |
18 | 0.839865 | 0.8398684 |
19 | 0.6782383 | 0.6782419 |
20 | 0.60077846 | 0.6007782 |
21 | 0.95954794 | 0.95955056 |
22 | 0.0 | 0.0 |
23 | 0.10886551 | 0.10886557 |
24 | 0.02142251 | 0.02142265 |
25 | 0.05266253 | 0.05266258 |
Table A8.
Sample from class 32. k denotes body point number.
Table A8.
Sample from class 32. k denotes body point number.
k | CAM | Grad-CAM |
---|
1 | 0.07923103 | 0.07923108 |
2 | 0.2850566 | 0.28505734 |
3 | 0.26772848 | 0.2677287 |
4 | 0.08914754 | 0.08914759 |
5 | 0.6860553 | 0.68605727 |
6 | 0.98223686 | 0.9822402 |
7 | 1.0 | 1.0 |
8 | 0.93831366 | 0.93831354 |
9 | 0.39556953 | 0.39556977 |
10 | 0.37355593 | 0.37355682 |
11 | 0.4707105 | 0.4707117 |
12 | 0.54854244 | 0.5485435 |
13 | 0.04235959 | 0.0423594 |
14 | 0.03665932 | 0.03665918 |
15 | 0.00418666 | 0.00418662 |
16 | 0.0063788 | 0.00637893 |
17 | 0.04925954 | 0.04925963 |
18 | 0.04581013 | 0.04581019 |
19 | 0.0 | 0.0 |
20 | 0.01638052 | 0.01638054 |
21 | 0.32532248 | 0.32532266 |
22 | 0.56411064 | 0.56411153 |
23 | 0.8676206 | 0.8676238 |
24 | 0.39054847 | 0.39054966 |
25 | 0.45242724 | 0.45242897 |