An Autonomous Thermal Camera System for Monitoring Fumarole Activity
Abstract
:1. Introduction
2. The Thermal Camera System
2.1. Hardware
2.2. Software
3. Deployment
3.1. “Ol Njorowa” Gorge
3.2. “Ololbutot” Lava Field
3.3. Comparison with Other Sources
4. Discussion
- The Raspberry Pi computer in the control unit should be accessible remotely or be made hot-swappable in the field to be able to troubleshoot problems.
- There should be no cables going through the side of the housing. Instead, these should be interrupted by sealed bayonet connectors. Apart from the severed cables that we encountered inside one of the camera units, USB connectors could loosen over time by pulling cables on the outside.
- If possible, all camera data, but at least the system health data, should be regularly sent by a wireless connection. This could for example warn of a degrading battery.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARM | Advanced RISC Machines |
CPU | Central Processing Unit |
DC | Direct Current |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | ECMWF ReAnalysis v5 |
FLIR | Forward-looking infrared |
GNU | GNU’s Not Unix! |
GPS | Global Positioning System |
LWIR | Long-wave InfraRed |
PLC | Public Limited Company |
RAM | Random Access Memory |
RISC | Reduced Instruction Set Computer |
SD | Secure Digital |
USB | Universal Serial Bus |
References
- van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 255–269. [Google Scholar] [CrossRef]
- Lee, K.C. Geothermal Power Generation. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier: New York, NY, USA, 2004; pp. 875–893. [Google Scholar] [CrossRef]
- Dickson, M.H.; Fanelli, M. Geothermal Energy: Utilization and Technology, 1st ed.; Routledge: London, UK, 2003. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J.D. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Fadel, I.; Hecker, C.; Kimata, J.; Bonyo, E.; van der Meijde, M.; van der Werff, H.; van der Meer, F. Geoscientific monitoring of Olkaria’s geothermal motor. EOS 2021, 102. [Google Scholar] [CrossRef]
- Omenda, P.; Mangi, P.; Ofwona, C.; Mwangi, M. Country update for Kenya 2015–2019. In Proceedings of the World Geothermal Congress, International Geothermal Association, Reykjavik, Iceland, 26 April–2 May 2020. [Google Scholar]
- Sturchio, N.C.; Dunkley, P.N.; Smith, M. Climate-driven variations in geothermal activity in the northern Kenya rift valley. Nature 1993, 362, 233–0234. [Google Scholar] [CrossRef]
- Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat flux using Landsat TM/ETM+ thermal infrared data — A case study at Karapiti (‘Craters of the Moon’) thermal area, New Zaland. J. Volcanol. Geotherm. Res. 2012, 235–236, 1–10. [Google Scholar] [CrossRef]
- Ingebritsen, S.; Galloway, D.; Colvard, E.; Sorey, M.; Mariner, R. Time-variation of hydrothermal discharge at selected sites in the western United States: Implications for monitoring. J. Volcanol. Geotherm. Res. 2001, 111, 1–23. [Google Scholar] [CrossRef]
- Peters, N.; Oppenheimer, C.; Kyle, P. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica. Geosci. Instrum. Method. Data Syst 2014, 3, 13–20. [Google Scholar] [CrossRef]
- FLIR A655SC LWIR Camera. Available online: https://www.flir.eu/products/a655sc/ (accessed on 15 March 2024).
- FLIR—A35 & A65 Cameras Manual Control of the NUC. Available online: https://flir.custhelp.com/app/answers/detail/a_id/1319/related/1 (accessed on 15 March 2024).
- The Generic Interface for Cameras Standard. Available online: https://www.emva.org/standards-technology/genicam/ (accessed on 15 March 2024).
- ResearchIR Software. Available online: https://www.flir.eu/support/products/researchir#Overview (accessed on 15 March 2024).
- Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/ (accessed on 15 March 2024).
- Sleepy Pi 2-Micro USB 2. Available online: https://spellfoundry.com/product/sleepy-pi-2/ (accessed on 15 March 2024).
- Sleepy Pi 2 FAQ. Available online: https://spellfoundry.com/docs/sleepy-pi2-faq/#4-toc-title (accessed on 15 March 2024).
- Cable GPS with USB Interface (SiRF Star IV). Available online: https://www.globalsat.com.tw/en/product-199952/Cable-GPS-with-USB-interface-SiRF-Star-IV-BU-353S4.html (accessed on 15 March 2024).
- The Network Time Protocol. Available online: https://www.ntp.org/ (accessed on 15 March 2024).
- The Arduino Integrated Development Environment. Available online: https://www.arduino.cc/en/software (accessed on 15 March 2024).
- Raspbian 9.8. Available online: http://www.raspbian.org/ (accessed on 15 March 2024).
- The GNU Project’s Bourne Again SHell. Available online: https://www.gnu.org/software/bash/ (accessed on 15 March 2024).
- A Vision Library for Genicam Based Cameras. Available online: https://github.com/AravisProject/aravis (accessed on 15 March 2024).
- Welcome to Python.org. Available online: www.python.org (accessed on 15 March 2024).
- Cyclapse Time-Lapse Camera System. Available online: https://web.archive.org/web/20230831002228/https://cyclapse.com/ (accessed on 15 March 2024).
- Vantage Pro 2 Weather Station. Available online: https://www.davisinstruments.com/pages/vantage-pro2 (accessed on 15 March 2024).
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 15 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Werff, H.; Bonyo, E.; Hecker, C. An Autonomous Thermal Camera System for Monitoring Fumarole Activity. Sensors 2024, 24, 1999. https://doi.org/10.3390/s24061999
van der Werff H, Bonyo E, Hecker C. An Autonomous Thermal Camera System for Monitoring Fumarole Activity. Sensors. 2024; 24(6):1999. https://doi.org/10.3390/s24061999
Chicago/Turabian Stylevan der Werff, Harald, Eunice Bonyo, and Christoph Hecker. 2024. "An Autonomous Thermal Camera System for Monitoring Fumarole Activity" Sensors 24, no. 6: 1999. https://doi.org/10.3390/s24061999
APA Stylevan der Werff, H., Bonyo, E., & Hecker, C. (2024). An Autonomous Thermal Camera System for Monitoring Fumarole Activity. Sensors, 24(6), 1999. https://doi.org/10.3390/s24061999