Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis
Abstract
:1. Introduction
1.1. Model-Based Diagnostics
1.2. Data-Driven Diagnostics
1.3. Intelligent Diagnostics Process
1.4. Troubleshooting Methods
1.5. Backpropagation Algorithm
2. Materials and Methods
2.1. Introduction
2.2. Approaches to FDD
2.3. Paper Structure
3. Discussion and Analysis of the Existing Literature
3.1. Discussion
3.1.1. Fault Detection and Diagnosis Techniques
3.1.2. Implementation and Challenges
3.1.3. Set-Point Changes and Solutions
3.1.4. Future Directions and Considerations
3.1.5. Application in Industries
3.1.6. Testing Approaches
3.2. Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, S.; Turnbull, R.; Khodadad, D.; Löfstrand, M. A Vibration Based Automatic Fault Detection Scheme for Drilling Process Using Type-2 Fuzzy Logic. Algorithms 2022, 15, 284. [Google Scholar] [CrossRef]
- Okwuosa, C.N.; Akpudo, U.E.; Hur, J.W. A Cost-Efficient MCSA-Based Fault Diagnostic Framework for SCIM at Low-Load Conditions. Algorithms 2022, 15, 212. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.J.; Gong, Y.; Du, K.L. Mechanical Fault Prognosis through Spectral Analysis of Vibration Signals. Algorithms 2022, 15, 94. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, S. Blended Filter-Based Detection for Thruster Valve Failure and Control Recovery Evaluation for RLV. Algorithms 2019, 12, 228. [Google Scholar] [CrossRef]
- Fiksel, J. Designing Resilient, Sustainable Systems. Environ. Sci. Technol. 2003, 37, 5330–5339. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.K.; Fowler, M. A Review of Lithium-Ion Battery Fault Diagnostic Algorithms: Current Progress and Future Challenges. Algorithms 2020, 13, 62. [Google Scholar] [CrossRef]
- Schimmack, M.; Mercorelli, P. An Adaptive Derivative Estimator for Fault-Detection Using a Dynamic System with a Suboptimal Parameter. Algorithms 2019, 12, 101. [Google Scholar] [CrossRef]
- Camarena-Martinez, D.; Osornio-Rios, R.; Romero-Troncoso, R.; Garcia-Perez, A. Fused Empirical Mode Decomposition and MUSIC Algorithms for Detecting Multiple Combined Faults in Induction Motors. J. Appl. Res. Technol. 2015, 13, 160–167. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J. Fault Diagnosis of Batch Chemical Processes Using a Dynamic Time Warping (DTW)-Based Artificial Immune System. Ind. Eng. Chem. Res. 2011, 50, 4534–4544. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T.; Ullah, A.; Alam, M.; Sohail, M. Real time health monitoring of industrial machine using multiclass support vector machine. In Proceedings of the 2nd International Conference on Control and Robotics Engineering (ICCRE), Bangkok, Thailand, 1–3 April 2017. [Google Scholar] [CrossRef]
- Ahmed, H.O.A.; Nandi, A.K. Three-Stage Hybrid Fault Diagnosis for Rolling Bearings with Compressively Sampled Data and Subspace Learning Techniques. IEEE Trans. Ind. Electron. 2019, 66, 5516–5524. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Mahmoudi, M.R.; Avazzadeh, Z. Diagnosis and clustering of power transformer winding fault types by cross-correlation and clustering analysis of FRA results. IET Gen. Transm. Distrib. 2018, 12, 4301–4309. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T.; de Silva, C.W. Fault detection in mobile robots using sensor fusion. In Proceedings of the 10th International Conference on Computer Science & Education, London, UK, 1–3 July 2015; pp. 8–13. [Google Scholar] [CrossRef]
- Pinto, C.; Pinto, R.; Gonçalves, G. Towards Bio-Inspired Anomaly Detection Using the Cursory Dendritic Cell Algorithm. Algorithms 2021, 15, 1. [Google Scholar] [CrossRef]
- Peres, F.A.P.; Fogliatto, F.S. Variable selection methods in multivariate statistical process control: A systematic literature review. Comp. Ind. Eng. 2018, 115, 603–619. [Google Scholar] [CrossRef]
- Qi, H.; Liu, F.; Xiao, T.; Su, J. A Robust and Energy-Efficient Weighted Clustering Algorithm on Mobile Ad Hoc Sensor Networks. Algorithms 2018, 11, 116. [Google Scholar] [CrossRef]
- Odongo, G.; Musabe, R.; Hanyurwimfura, D. A Multinomial DGA Classifier for Incipient Fault Detection in Oil-Impregnated Power Transformers. Algorithms 2021, 14, 128. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Qi, D. An Intelligent Warning Method for Diagnosing Underwater Structural Damage. Algorithms 2019, 12, 183. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T.; Haq, I.U.; Anwar, S.; Iqbal, J. An Improved Negative Selection Algorithm-Based Fault Detection Method. IETE J. Res. 2020, 68, 3406–3417. [Google Scholar] [CrossRef]
- Ferentinos, K.; Albright, L. Fault Detection and Diagnosis in Deep-trough Hydroponics using Intelligent Computational Tools. Biosyst. Eng. 2003, 84, 13–30. [Google Scholar] [CrossRef]
- Cheng, F.; He, Q.P.; Zhao, J. A novel process monitoring approach based on variational recurrent autoencoder. Comput. Chem. Eng. 2019, 129, 106515. [Google Scholar] [CrossRef]
- Zhang, X.; Foo, G.; Don Vilathgamuwa, M.; Tseng, K.J.; Bhangu, B.S.; Gajanayake, C. Sensor fault detection, isolation and system reconfiguration based on extended Kalman filter for induction motor drives. IET Electr. Power Appl. 2013, 7, 607–617. [Google Scholar] [CrossRef]
- Dezan, C.; Zermani, S.; Hireche, C. Embedded Bayesian Network Contribution for a Safe Mission Planning of Autonomous Vehicles. Algorithms 2020, 13, 155. [Google Scholar] [CrossRef]
- Grebenik, J.; Zhang, Y.; Bingham, C.; Srivastava, S. Roller element bearing acoustic fault detection using smartphone and consumer microphones comparing with vibration techniques. In Proceedings of the 17th International Conference on Mechatronics—Mechatronika (ME), Prague, Czech Republic, 7–9 December 2016; pp. 1–7. [Google Scholar]
- Abad, M.R.A.A.; Moosavian, A.; Khazaee, M. Wavelet transform and least square support vector machine for mechanical fault detection of an alternator using vibration signal. J. Low Freq. Noise Vib. Act. Control 2016, 35, 52–63. [Google Scholar] [CrossRef]
- Guo, H.; Xu, J.; Chen, Y.H. Robust Control of Fault-Tolerant Permanent-Magnet Synchronous Motor for Aerospace Application With Guaranteed Fault Switch Process. IEEE Trans. Ind. Electron. 2015, 62, 7309–7321. [Google Scholar] [CrossRef]
- Waghen, K.; Ouali, M.S. A Data-Driven Fault Tree for a Time Causality Analysis in an Aging System. Algorithms 2022, 15, 178. [Google Scholar] [CrossRef]
- Bighamian, R.; Mirdamadi, H.R.; Hahn, J.O. Damage Identification in Collocated Structural Systems Using Structural Markov Parameters. J. Dyn. Syst. Meas. Control 2014, 137. [Google Scholar] [CrossRef]
- Chehade, A.; Bonk, S.; Liu, K. Sensory-Based Failure Threshold Estimation for Remaining Useful Life Prediction. IEEE Trans. Reliab. 2017, 66, 939–949. [Google Scholar] [CrossRef]
- Ballal, M.S.; Khan, Z.J.; Suryawanshi, H.M.; Sonolikar, R.L. Adaptive Neural Fuzzy Inference System for the Detection of Inter-Turn Insulation and Bearing Wear Faults in Induction Motor. IEEE Trans. Ind. Electron. 2007, 54, 250–258. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, Z.; Hu, C.; Yin, X.; Hu, G.; Zhao, F. Fault Diagnosis Based on Belief Rule Base with Considering Attribute Correlation. IEEE Access 2018, 6, 2055–2067. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X. Fault Diagnosis in Chemical Process Based on Self-organizing Map Integrated with Fisher Discriminant Analysis. Chin. J. Chem. Eng. 2013, 21, 382–387. [Google Scholar] [CrossRef]
- Feng, Z.; Zuo, M.J. Vibration signal models for fault diagnosis of planetary gearboxes. J. Sound Vib. 2012, 331, 4919–4939. [Google Scholar] [CrossRef]
- Bolchini, C.; Cassano, L.; Garza, P.; Quintarelli, E.; Salice, F. An Expert CAD Flow for Incremental Functional Diagnosis of Complex Electronic Boards. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 835–848. [Google Scholar] [CrossRef]
- Cheng, G.; Cheng, Y.l.; Shen, L.h.; Qiu, J.b.; Zhang, S. Gear fault identification based on Hilbert–Huang transform and SOM neural network. Measurement 2013, 46, 1137–1146. [Google Scholar] [CrossRef]
- Gottumukkala, P.; G, S.R. Fault Detection in Mobile Communication Networks Using Data Mining Techniques with Big Data Analytics. Int. J. Cybern. Inform. 2016, 5, 81–89. [Google Scholar] [CrossRef]
- Abaei, G.; Selamat, A. A survey on software fault detection based on different prediction approaches. Viet. J. Comput. Sci. 2013, 1, 79–95. [Google Scholar] [CrossRef]
- Benmoussa, S.; Djeziri, M.A. Remaining useful life estimation without needing for prior knowledge of the degradation features. IET Sci. Meas. Technol. 2017, 11, 1071–1078. [Google Scholar] [CrossRef]
- Boudinar, A.H.; Benouzza, N.; Bendiabdellah, A.; Khodja, M.E.A. Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method. IEEE Trans. Ind. Appl. 2016, 52, 3851–3860. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Z. From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis. IEEE Trans. Ind. Inform. 2013, 9, 2226–2238. [Google Scholar] [CrossRef]
- Bo, L.; Liu, X.; Xu, G. Intelligent Diagnostics for Bearing Faults Based on Integrated Interaction of Nonlinear Features. IEEE Trans. Ind. Inform. 2020, 16, 1111–1119. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T.; Lang, H.; de Silva, C.W. Adaptive System Identification and Severity Index-Based Fault Diagnosis in Motors. IEEE/ASME Trans. Mechatron. 2019, 24, 1628–1639. [Google Scholar] [CrossRef]
- Blödt, M.; Faucher, J.; Dagues, B.; Chabert, M. Mechanical load fault detection in induction motors by stator current time-frequency analysis. In Proceedings of the IEEE International Conference on Electric Machines and Drives, San Antonio, TX, USA, 15–18 May 2005; pp. 1454–1463. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Song, Y.; Habibi, S.R. Novel Model-Based Estimators for the Purposes of Fault Detection and Diagnosis. IEEE/ASME Trans. Mechatron. 2013, 18, 1237–1249. [Google Scholar] [CrossRef]
- Gelle, G.; Galy, J.; Delaunay, G. Blind Source Separation: A Tool for System Monitoring and Fault Detection? IFAC Proc. Vol. 2000, 33, 705–710. [Google Scholar] [CrossRef]
- Gao, X.Z.; Ovaska, S.; Wang, X.; Chow, M.Y. Multi-Level Optimization of Negative Selection Algorithm Detectors with Application in Motor Fault Detection. Intell. Autom. Soft Comput. 2010, 16, 353–375. [Google Scholar] [CrossRef]
- Costa Silva, G.; Palhares, R.M.; Caminhas, W.M. Immune inspired Fault Detection and Diagnosis: A fuzzy-based approach of the negative selection algorithm and participatory clustering. Expert Syst. Appl. 2012, 39, 12474–12486. [Google Scholar] [CrossRef]
- Boulkroune, B.; Galvez-Carrillo, M.; Kinnaert, M. Combined Signal and Model-Based Sensor Fault Diagnosis for a Doubly Fed Induction Generator. IEEE Trans. Control Syst. Technol. 2013, 21, 1771–1783. [Google Scholar] [CrossRef]
- El Bouchikhi, E.H.; Choqueuse, V.; Benbouzid, M. Induction machine faults detection using stator current parametric spectral estimation. Mech. Syst. Signal Process. 2015, 52–53, 447–464. [Google Scholar] [CrossRef]
- Bennacer, L.; Amirat, Y.; Chibani, A.; Mellouk, A.; Ciavaglia, L. Self-Diagnosis Technique for Virtual Private Networks Combining Bayesian Networks and Case-Based Reasoning. IEEE Trans. Autom. Sci. Eng. 2015, 12, 354–366. [Google Scholar] [CrossRef]
- Benmoussa, S.; Bouamama, B.O.; Merzouki, R. Bond Graph Approach for Plant Fault Detection and Isolation: Application to Intelligent Autonomous Vehicle. IEEE Trans. Autom. Sci. Eng. 2014, 11, 585–593. [Google Scholar] [CrossRef]
- Li, Q.; Liang, S. Weak Fault Detection of Tapered Rolling Bearing Based on Penalty Regularization Approach. Algorithms 2018, 11, 184. [Google Scholar] [CrossRef]
- Altamiranda, E.; Colina, E. Intelligent Supervision and Integrated Fault Detection and Diagnosis for Subsea Control Systems. In Proceedings of the OCEANS 2007-Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Boudiaf, A.; Moussaoui, A.; Dahane, A.; Atoui, I. A Comparative Study of Various Methods of Bearing Faults Diagnosis Using the Case Western Reserve University Data. J. Fail. Anal. Prev. 2016, 16, 271–284. [Google Scholar] [CrossRef]
- Benbouzid, M.; Vieira, M.; Theys, C. Induction motors’ faults detection and localization using stator current advanced signal processing techniques. IEEE Trans. Power Electron. 1999, 14, 14–22. [Google Scholar] [CrossRef]
- Abid, A.; Khan, M.T. Multi-sensor, multi-level data fusion and behavioral analysis based fault detection and isolation in mobile robots. In Proceedings of the 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 3–5 October 2017; pp. 40–45. [Google Scholar] [CrossRef]
- Conatser, R.; Wagner, J.; Ganta, S.; Walker, I. Diagnosis of automotive electronic throttle control systems. Control Eng. Pract. 2004, 12, 23–30. [Google Scholar] [CrossRef]
- Cordoneanu, D.; Niţu, C. A Review of Fault Diagnosis in Mechatronics Systems. Int. J. Mechatron. Appl. Mech. 2018, 1, 228–235. [Google Scholar] [CrossRef]
- Mercorelli, P. A Fault Detection and Data Reconciliation Algorithm in Technical Processes with the Help of Haar Wavelets Packets. Algorithms 2017, 10, 13. [Google Scholar] [CrossRef]
- Daga, A.P.; Garibaldi, L. GA-Adaptive Template Matching for Offline Shape Motion Tracking Based on Edge Detection: IAS Estimation from the SURVISHNO 2019 Challenge Video for Machine Diagnostics Purposes. Algorithms 2020, 13, 33. [Google Scholar] [CrossRef]
- Bindi, M.; Corti, F.; Aizenberg, I.; Grasso, F.; Lozito, G.M.; Luchetta, A.; Piccirilli, M.C.; Reatti, A. Machine Learning-Based Monitoring of DC-DC Converters in Photovoltaic Applications. Algorithms 2022, 15, 74. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, R.; Chen, S.; Zhang, F.; Yang, J.; Zhang, X. Series Arc Fault Detection Algorithm Based on Autoregressive Bispectrum Analysis. Algorithms 2015, 8, 929–950. [Google Scholar] [CrossRef]
- Calado, J.; Roberts, P. An Intelligent On-Line Supervisory Fault Detection and Diagnosis System. IFAC Proc. Vol. 1995, 28, 865–870. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercorelli, P. Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis. Sensors 2024, 24, 2656. https://doi.org/10.3390/s24082656
Mercorelli P. Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis. Sensors. 2024; 24(8):2656. https://doi.org/10.3390/s24082656
Chicago/Turabian StyleMercorelli, Paolo. 2024. "Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis" Sensors 24, no. 8: 2656. https://doi.org/10.3390/s24082656
APA StyleMercorelli, P. (2024). Recent Advances in Intelligent Algorithms for Fault Detection and Diagnosis. Sensors, 24(8), 2656. https://doi.org/10.3390/s24082656