A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise
Abstract
:1. Introduction
- (1)
- Based on ML modeling and the VB method, a robust IMM-MBM filter is proposed to adaptively learn unknown glint noise statistics while filtering.
- (2)
- A series of numerical simulations is performed to test the robustness of the proposed algorithm and compare its performance with the existing solutions.
2. Background
2.1. Notation
2.2. RFS Statistics
2.3. ST and ML Distributions
3. Gaussian MBM Filter
4. Robust MMTT under Glint Noise
Algorithm 1: A summary of the VB function. |
5. Numerical Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Single-target state vector | |
Single-target measurement vector | |
Multitarget state RFS | |
Multitarget measurement RFS | |
k | Discrete time step |
Single-target state transition density | |
Single-target hypothesis for the i-th BC | |
Global hypothesis | |
Gamma function | |
State vector dimension | |
Measurement vector dimension | |
Measurement likelihood function | |
Probability of survival | |
Probability of detection | |
Clutter intensity |
Appendix A
Appendix B
Appendix C
Appendix D
References
- Vo, B.N.; Mallick, M.; Bar-Shalom, Y.; Coraluppi, S.; Osborne, R.; Mahler, R.; Vo, B.T. Multitarget tracking. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Mahler, R.P. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 2008, 57, 409–423. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. Signal Process. 2014, 62, 6554–6567. [Google Scholar] [CrossRef]
- García-Fernández, Á.F.; Williams, J.L.; Granström, K.; Svensson, L. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1883–1901. [Google Scholar] [CrossRef]
- Williams, J.L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based MeMBer. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1664–1687. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Xia, Y.; Granstrcom, K.; Svensson, L.; García-Fernández, Á.F. Performance evaluation of multi-Bernoulli conjugate priors for multi-target filtering. In Proceedings of the International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar]
- Punithakumar, K.; Kirubarajan, T.; Sinha, A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 87–98. [Google Scholar] [CrossRef]
- Pasha, S.A.; Vo, B.N.; Tuan, H.D.; Ma, W.K. A Gaussian mixture PHD filter for jump Markov system models. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 919–936. [Google Scholar] [CrossRef]
- Ouyang, C.; Ji, H.; Guo, Z. Extensions of the SMC-PHD filters for jump Markov systems. Signal Process. 2012, 92, 1422–1430. [Google Scholar] [CrossRef]
- Dunne, D.; Kirubarajan, T. Multiple model multi-Bernoulli filters for manoeuvering targets. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2679–2692. [Google Scholar] [CrossRef]
- Fu, Y.; Long, J.; Yang, W. Maneuvering multi-target tracking using the multi-model cardinalized probability hypothesis density filter. Chin. J. Electron. 2013, 22, 634–640. [Google Scholar]
- Yang, J.; Ji, H.; Ge, H. Multi-model particle cardinality-balanced multi-target multi-Bernoulli algorithm for multiple manoeuvring target tracking. IET Radar Sonar Navig. 2013, 7, 101–112. [Google Scholar] [CrossRef]
- Yi, W.; Jiang, M.; Hoseinnezhad, R. The multiple model Vo–Vo filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1045–1054. [Google Scholar] [CrossRef]
- Li, G.; Kong, L.; Yi, W.; Li, X. Multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets. IEEE Sensors J. 2020, 21, 3143–3154. [Google Scholar] [CrossRef]
- Cao, C.; Zhao, Y. A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets. Signal Process. 2021, 186, 108119. [Google Scholar] [CrossRef]
- Lindsay, J.E. Angular glint and the moving, rotating, complex radar target. IEEE Trans. Aerosp. Electron. Syst. 1968, AES-4, 164–173. [Google Scholar] [CrossRef]
- Sandhu, G.; Saylor, A. A real-time statistical radar target model. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21, 490–507. [Google Scholar] [CrossRef]
- Daeipour, E.; Bar-Shalom, Y. An interacting multiple model approach for target tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 706–715. [Google Scholar] [CrossRef]
- Xiaobin, F.; Peikang, H.; Zhengfang, F. Analysis spectral-power-density of glint of radar-extended target. In Proceedings of the 2001 CIE International Conference on Radar Proceedings (Cat No. 01TH8559), Beijing, China, 15–18 October 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 1128–1131. [Google Scholar]
- Shi, X.; Liu, Y.; Wang, X.; Wang, C. Angular glint of aircraft formation and its applications. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Beijing, China, 15–18 October 2001; IEEE: Piscataway, NJ, USA, 2007; pp. 1334–1339. [Google Scholar]
- Borden, B.H.; Mumford, M.L. A statistical glint/radar cross section target model. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 781–785. [Google Scholar] [CrossRef]
- Bilik, I.; Tabrikian, J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 246–262. [Google Scholar] [CrossRef]
- Wu, W.R. Target racking with glint noise. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 174–185. [Google Scholar]
- Li, W.; Jia, Y.; Du, J.; Zhang, J. PHD filter for multi-target tracking with glint noise. Signal Process. 2014, 94, 48–56. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Hu, Y.; Wang, J. Cardinalised probability hypothesis density tracking algorithm for extended objects with glint noise. IET Sci. Meas. Technol. 2016, 10, 528–536. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Leung, H.; Shen, K.; Li, M. The labeled multi-Bernoulli filter for multitarget tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 2253–2268. [Google Scholar] [CrossRef]
- Fox, C.W.; Roberts, S.J. A tutorial on variational Bayesian inference. Artif. Intell. Rev. 2012, 38, 85–95. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, B.; Zou, Y.; Li, L. Multi-object Bayesian filter for jump Markov system under glint noise. Signal Process. 2019, 157, 131–140. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, B. The labeled multi-Bernoulli filter for jump Markov systems under glint noise. IEEE Access 2019, 7, 92322–92328. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Zhao, Y.; Chambers, J.A. A novel robust Gaussian–Student’s t mixture distribution based Kalman filter. IEEE Trans. Signal Process. 2019, 67, 3606–3620. [Google Scholar] [CrossRef]
- Eltoft, T.; Kim, T.; Lee, T.W. On the multivariate Laplace distribution. IEEE Signal Process. Lett. 2006, 13, 300–303. [Google Scholar] [CrossRef]
- Wang, G.; Yang, C.; Ma, X. A novel robust nonlinear Kalman filter based on multivariate Laplace distribution. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2705–2709. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. A robust Gaussian approximate filter for nonlinear systems with heavy tailed measurement noises. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 4209–4213. [Google Scholar]
- Fu, H.; Cheng, Y. A Computationally Efficient Robust Cubature Kalman Filter With Multivariate Laplace Distribution. IEEE Trans. Instrum. Meas. 2023, 72, 6502811. [Google Scholar] [CrossRef]
- Fu, H.; Huang, W.; Li, Z.; Cheng, Y.; Zhang, T. Robust Cubature Kalman Filter With Gaussian-Multivariate Laplacian Mixture Distribution and Partial Variational Bayesian Method. IEEE Trans. Signal Process. 2023, 71, 847–858. [Google Scholar] [CrossRef]
- Blom, H.A.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 1988, 33, 780–783. [Google Scholar] [CrossRef]
- Roth, M.; Özkan, E.; Gustafsson, F. A Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 5770–5774. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, N.; Wu, Z.; Chambers, J.A. A novel robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1545–1554. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J. A new outlier-robust Student’s t based Gaussian approximate filter for cooperative localization. IEEE/ASME Trans. Mechatronics 2017, 22, 2380–2386. [Google Scholar] [CrossRef]
- Klausner, N.; Azimi-Sadjadi, M.R. Non-Gaussian target detection in sonar imagery using the multivariate Laplace distribution. IEEE J. Ocean. Eng. 2014, 40, 452–464. [Google Scholar] [CrossRef]
- García-Fernández, Á.F.; Xia, Y.; Granström, K.; Svensson, L.; Williams, J.L. Gaussian implementation of the multi-Bernoulli mixture filter. In Proceedings of the International Conference on Information Fusion (Fusion), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Rahmathullah, A.S.; García-Fernández, Á.F.; Svensson, L. Generalized optimal sub-pattern assignment metric. In Proceedings of the International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Liu, Z.; Xie, W. Multi-target Bayesian filter for propagating marginal distribution. Signal Process. 2014, 105, 328–337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Gu, H.; Su, W. A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise. Sensors 2024, 24, 2720. https://doi.org/10.3390/s24092720
Yu B, Gu H, Su W. A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise. Sensors. 2024; 24(9):2720. https://doi.org/10.3390/s24092720
Chicago/Turabian StyleYu, Benru, Hong Gu, and Weimin Su. 2024. "A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise" Sensors 24, no. 9: 2720. https://doi.org/10.3390/s24092720
APA StyleYu, B., Gu, H., & Su, W. (2024). A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise. Sensors, 24(9), 2720. https://doi.org/10.3390/s24092720