GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea
Abstract
:1. Introduction
2. Research Area and Data
2.1. Research Area
2.2. Measured Data
2.3. Sentinel-1 Data
3. Proposed Method
3.1. Data Preprocessing
3.2. Feature-Enhancement Strategy
3.3. Active Learning
- The sample set is initially divided into a training set and a validation set.
- From the training set, 30% of the samples are randomly selected and used to train the GBDT model, thereby generating the initial model. The remaining 70% of the training set samples are used as a pool for sampling.
- A sampling strategy based on the maximum standard deviation is used to select the most representative samples from the pool, they are to the model for training, and the selected samples remove are removed from the pool.
- Check whether the training results meet the requirements. If they meet the requirements, end active learning; otherwise, skip to step 3.
3.4. IFEAL-GBDT
4. Experimental Results and Analysis
4.1. Experimental Process
4.1.1. Experimental Environment
4.1.2. Experimental Design
4.2. Comparative Experimental Analysis
4.3. Feature Importance Analysis
4.4. Analysis of Different Feature Combination Results
4.5. Analysis of Active-Learning and Extrapolation Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
File ID | Date | Path | Frame |
---|---|---|---|
S1A_EW_GRDM_1SDH_20181214T164117_20181214T164217_025024_02C28F_7842-GRD_MD | 14 December 2018 | 102 | 334 |
S1A_EW_GRDM_1SDH_20190109T162547_20190109T162641_025403_02D04E_65E7-GRD_MD | 9 January 2019 | 131 | 346 |
S1B_EW_GRDM_1SDH_20190417T165724_20190417T165824_015849_01DC42_4BEB-GRD_MD | 17 April 2019 | 73 | 338 |
S1B_EW_GRDM_1SDH_20201107T174548_20201107T174648_024162_02DEE4_E72F-GRD_MD | 7 November 2020 | 161 | 324 |
S1A_EW_GRDM_1SDH_20201202T173801_20201202T173905_035510_0426DA_FA73-GRD_MD | 2 December 20201 | 88 | 321 |
S1A_EW_GRDM_1SDH_20210103T163414_20210103T163514_035976_0436F8_7AA9-GRD_MD | 3 January 2021 | 29 | 346 |
S1B_EW_GRDM_1SDH_20210312T175351_20210312T175458_025985_031991_A085-GRD_MD | 12 March 2021 | 59 | 322 |
References
- Wadhams, P. Ice in the Ocean, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 948. [Google Scholar]
- Xie, T.; Zhao, L. Advances in Sea lce Concentration Retrieval Based on Satellite Remote Sensing. Adv. Mar. Sci. 2022, 40, 351–366. [Google Scholar]
- Chi, J.; Cheol, H.K. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks. GIScience Remote Sens. 2021, 58, 812–830. [Google Scholar] [CrossRef]
- Wensnahan, M.; Maykut, G.A. Passive microwave remote sensing of thin sea ice using principal component analysis. J. Geophys. Res. 1993, 98, 12453–12468. [Google Scholar] [CrossRef]
- Ji, Q.; Pang, X.; Zhao, X.; Cheng, Z. Comparison of Sea Ice Thickness Retrieval Algorithms from CryoSat-2 Satellite Altimeter Data. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1467–1472. [Google Scholar]
- Liu, H.; Guo, H.; Zhang, L. SVM-Based Sea Ice Classification Using Textural Features and Concentration From RADARSAT-2 Dual-Pol ScanSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1601–1613. [Google Scholar] [CrossRef]
- Karvonen, J.; Simila, M.; Hallikainen, M.; Haas, C. Estimation of equivalent deformed ice thickness from Baltic Sea ice SAR imagery. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 29 July 2005; pp. 5165–5167. [Google Scholar]
- Sanden, J.; Drouin, H. Satellite SAR Observations of River Ice Cover: A RADARSAT-2 (C-band) and ALOS PALSAR (L-band) Comparison. In Proceedings of the 16th Workshop on River Ice, Winnipeg, MB, Canada, 18–22 September 2011; pp. 179–197. [Google Scholar]
- Nakamura, K.; Wakabayashi, H.; Uto, S. Sea-Ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data. Ann. Glaciol. 2006, 44, 261–268. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Uto, S. Observation of Sea-Ice Thickness Using ENVISAT Data from Lutzow-Holm Bay, East Antarctica. IEEE Geosci. Remote Sens. Lett. 2009, 6, 277–281. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.D.; Hwang, B.J. Characterization of Arctic Sea Ice Thickness Using High-Resolution Spaceborne Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 13–22. [Google Scholar] [CrossRef]
- Shih, S.E.; Ding, K.H.; Nghiem, S.V.; Hsu, C.C. Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1589–1598. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, P. Physical Properties of Summer Sea Ice in the Pacific Sector of the Arctic during 2008–2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016371. [Google Scholar] [CrossRef]
- Krishfield, R.; Proshutinsky, A. Bgos uls Data Processing Procedure; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2006. [Google Scholar]
- Rothrock, D.A.; Percival, D.B.; Wenshanan, M. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Shi, L.; Karvonen, J.; Cheng, B. Sea ice thickness retrieval from SAR imagery over Bohai sea. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 4864–4867. [Google Scholar]
- Mahmud, S.M.; Howell, E.S.; Geldsetzer, T. Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997–2014. Remote Sens. Environ. 2016, 178, 59–69. [Google Scholar] [CrossRef]
- Ogrady, D.; Leblanc, M.; Gillieson, D. Relationship of localincidence angle with satellite radar backscatter for different surface conditions. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 42–53. [Google Scholar]
- Topouzelis, K.; Singhas, S. Incidence angle Normalization of Wide Swath SAR Data for Oceanographic Applications. Open Geosci. 2016, 8, 450–464. [Google Scholar] [CrossRef]
- Dierking, W. Sea Ice Monitoring by Synthetic Aperture Radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- Lamare, M.L.; Hedley, J.D.; King, M.D. The effects of surface roughness on the calculated, spectral, conical-conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice. Cryosphere 2023, 17, 737–751. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef]
- Han, Y.; Li, P.; Zhang, Y. Combining active learning and transductive support vector machines for sea ice detection. J. Appl. Remote Sens. 2018, 12, 026016. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Park, J.W.; Korosov, A.A.; Babiker, M.; Won, J.S. Classification of Sea Ice Types in Sentinel–1 Synthetic Aperture Radar Images. Cryosphere 2020, 14, 2629–2645. [Google Scholar] [CrossRef]
- Wang, L.; Scott, K.A.; Clausi, D.A. Sea Ice Concentration Estimation during Freeze-Up from SAR Imagery Using a Convolutional Neural Network. Remote Sens. 2017, 9, 408. [Google Scholar] [CrossRef]
Device | A | B | D |
coordinate | 75.0001° N 149.9994° W | 78.0054° N 149.9641° W | 74.0031° N 140.0019° W |
time frame | 25 September 2018–27 August 2021 | 23 September 2018–30 August 2021 | 14 September 2018–7 September 2021 |
duration | 1074 | 1073 | 1089 |
Id | Feature | Description |
---|---|---|
1 | HH, HV | Dual polarization characteristics of Sentinel-1 |
2 | HHref, HVref | Normalization of HH and HV by incidence angle |
3 | HHref − HVref | Polarization subtraction |
4 | HHref + HVref | Polarization addition |
5 | HHref/HVref | Polarization ratio |
6 | Id 3/Id 4 | Normalized difference |
7 | Incidence angle | Corresponding incidence angle |
8 | Month | Corresponding month |
9 | Temperature | Sea water temperature |
Method | MAE | MSE | RMSE | R2 |
---|---|---|---|---|
LR | 0.188 | 0.059 | 0.243 | 0.702 |
BR | 0.167 | 0.05 | 0.226 | 0.732 |
1DCNN | 0.151 | 0.04 | 0.201 | 0.793 |
SVR | 0.114 | 0.029 | 0.172 | 0.845 |
BPNN | 0.112 | 0.027 | 0.165 | 0.861 |
DT | 0.102 | 0.026 | 0.163 | 0.866 |
IFEAL-GBDT | 0.085 | 0.019 | 0.137 | 0.912 |
Feature Vector | Expression |
---|---|
F1 | HH, HV |
F2 | HHref, HVref, HHref ± HVref, HHref/HVref, (HHref − HVref)/(HHref + HVref) |
F3 | F1 + F2 |
F4 | F3, Incidence angle, Month, Temperature |
Methods | F1 | F2 | F3 | F4 | ||||
---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | |
LR | 0.344 | 0.401 | 0.263 | 0.649 | 0.261 | 0.654 | 0.243 | 0.702 |
BR | 0.344 | 0.403 | 0.264 | 0.646 | 0.263 | 0.65 | 0.226 | 0.732 |
1DCNN | 0.337 | 0.425 | 0.239 | 0.706 | 0.237 | 0.714 | 0.201 | 0.793 |
SVR | 0.317 | 0.489 | 0.215 | 0.766 | 0.212 | 0.771 | 0.172 | 0.845 |
BPNN | 0.297 | 0.552 | 0.194 | 0.809 | 0.192 | 0.813 | 0.165 | 0.861 |
DT | 0.334 | 0.435 | 0.206 | 0.785 | 0.217 | 0.761 | 0.163 | 0.866 |
IFEAL-GBDT | 0.277 | 0.61 | 0.177 | 0.84 | 0.176 | 0.842 | 0.137 | 0.912 |
Methods | (1) | (2) | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
LR | 0.322 | 0.456 | 0.287 | 0.564 |
BR | 0.323 | 0.453 | 0.313 | 0.484 |
1DCNN | 0.286 | 0.571 | 0.246 | 0.686 |
SVR | 0.292 | 0.551 | 0.248 | 0.676 |
BPNN | 0.285 | 0.573 | 0.235 | 0.709 |
DT | 0.268 | 0.622 | 0.218 | 0.754 |
IFEAL-GBDT | 0.202 | 0.782 | 0.176 | 0.836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Huang, J.; Ma, Z.; Zheng, B.; Wang, J.; Zhang, Y. GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea. Sensors 2024, 24, 2836. https://doi.org/10.3390/s24092836
Han Y, Huang J, Ma Z, Zheng B, Wang J, Zhang Y. GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea. Sensors. 2024; 24(9):2836. https://doi.org/10.3390/s24092836
Chicago/Turabian StyleHan, Yanling, Junjie Huang, Zhenling Ma, Bowen Zheng, Jing Wang, and Yun Zhang. 2024. "GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea" Sensors 24, no. 9: 2836. https://doi.org/10.3390/s24092836
APA StyleHan, Y., Huang, J., Ma, Z., Zheng, B., Wang, J., & Zhang, Y. (2024). GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea. Sensors, 24(9), 2836. https://doi.org/10.3390/s24092836