Smart Water Quality Monitoring with IoT Wireless Sensor Networks
Abstract
:1. Introduction
2. Smart Water Quality Monitoring (SWQM)
2.1. Smart Water Quality Monitoring (SWQM) Framework
2.1.1. The SWQM Sensing System
2.1.2. The SWQM Communication System
2.1.3. The Head End System
2.2. Challenges in Water Quality Monitoring
2.2.1. Communication Technology
2.2.2. Topology
2.2.3. Bandwidth
2.2.4. Power Consumption
2.2.5. Fabrication
2.2.6. Security
2.2.7. Theft and Damages
2.2.8. The Underwater Environment
2.2.9. Sensors
2.3. Summary
3. Artificial Intelligence in Water Quality Monitoring Model
3.1. Materials and Methods
3.1.1. Dataset Acquisition and Processing in the Literature
3.1.2. Model Selection
3.1.3. Evaluation Metrics
3.1.4. Method
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanders, T. Design of Networks for Monitoring Water Quality; Water Resources Publications: Littleton, CO, USA, 1983. [Google Scholar]
- Strobl, R.; Robillard, P. Network Design for Water Quality Monitoring of Surface Freshwaters: A Review. J. Environ. Manag. 2008, 87, 639–648. [Google Scholar] [CrossRef] [PubMed]
- DFROBOT SEN0189 Turbidity Sensor. 2023. Available online: https://www.dfrobot.com/product-1394.html (accessed on 1 November 2023).
- YSI WQ730 Turbidity Sensor. 2023. Available online: https://www.ysi.com/wq730 (accessed on 13 October 2023).
- Aqualabo PF-CAP-C-00174 Turbidity Sensor. 2023. Available online: https://en.aqualabo.fr/turbidity-digital-sensor-bare-wires-7-m-cable-b3968.html (accessed on 5 October 2023).
- Daviteq Modbus Turbidity Sensor. 2023. Available online: https://daviteq.com/en/manuals/books/product-data-sheet-for-modbus-output-sensors/page/process-turbidity-sensor-with-modbus-output-mbrtu-tbd (accessed on 8 October 2023).
- DFROBOT SEN0244 TDS Sensor. 2023. Available online: https://www.dfrobot.com/product-1662.html (accessed on 1 November 2023).
- Hanna Instruments HI-763133 TDS Sensor. 2023. Available online: https://www.hannainstruments.co.uk/electrodes-and-probes/2633-hi-763133-quick-connect-tds-conductivity-probe (accessed on 15 October 2023).
- Wateranywhere TDS-3 TDS Sensor. 2023. Available online: https://wateranywhere.com/tds-meter-tests-0-9990-ppm-total-dissolved-solids-in-water-pocket-size-hm-digital/ (accessed on 3 October 2023).
- Antratek 314990742 Modbus TDS and EC Sensor. 2023. Available online: https://www.antratek.com/industrial-ec-tds-sensor-modbus-rtu-rs485-0-2v (accessed on 7 October 2023).
- Caballero, B.; Trugo, L.; Finglas, P.M. Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- YSI WQ201 pH Sensor. 2023. Available online: https://www.ysi.com/wq201 (accessed on 18 October 2023).
- DFROBOT SEN0169-V2 pH Sensor. 2023. Available online: https://www.dfrobot.com/product-2069.html (accessed on 1 November 2023).
- Tetraponics SP-P5 pH Sensor Probe. 2023. Available online: https://www.tetraponics.com/products/replacement-ec-probe (accessed on 10 October 2023).
- Eucatech 314990622 Modbus pH Sensor Probe, 2023. Available online: https://euca.co.za/products/sensecap-industrial-ph-sensor-nsc257 (accessed on 12 October 2023).
- Belcher, R.; Macdonald, A.M.G.; Parry, E. On mohr’s method for the determination of chlorides. Anal. Chim. Acta 1957, 16, 524–529. [Google Scholar] [CrossRef]
- YSI EXO Chloride Smart Sensor. 2023. Available online: https://www.ysi.com/product/id-599711/EXO-Chloride-Smart-Sensor (accessed on 20 October 2023).
- Riverplus WS102-CL Modbus Sensor. 2023. Available online: https://iiot.riverplus.com/product/ws102-cl-modbus-water-quality-analysis-residual-chloride-ion-cl-sensor/ (accessed on 11 October 2023).
- Libelium Proteus Water Sensor for Real-Time Detecting E. coli Bacteria. 2023. Available online: https://proteus-instruments.com/proteus-bod-multiparameter-water-quality-meter/ (accessed on 26 October 2023).
- DFROBOT SEN0451 Conductivity Sensor. 2023. Available online: https://www.dfrobot.com/product-2565.html (accessed on 1 November 2023).
- YSI WQ-COND Conductivity Sensor. 2023. Available online: https://www.ysi.com/wqc (accessed on 27 October 2023).
- Endress+Hauser CLS54D Conductivity Sensor. 2023. Available online: https://www.endress.com/en/field-instruments-overview/liquid-analysis-product-overview/conductivity-toroidal-sensor-cls54d?t.tabId=product-overview (accessed on 1 October 2023).
- YSI EXO Total Algae PC Smart Sensor. 2023. Available online: https://www.ysi.com/exo/talpc (accessed on 30 October 2023).
- Apure BGA-206A Algae Sensor. 2023. Available online: https://apureinstrument.com/water-quality-analysis/blue-green-algae-sensor/bga-206a-blue-green-algae-sensor/ (accessed on 28 October 2023).
- YSI WQ101 Temperature Sensor. 2023. Available online: https://www.ysi.com/wq101 (accessed on 19 October 2023).
- DFROBOT DS18B20 SEN0511 Temperature Sensor. 2023. Available online: https://www.dfrobot.com/product-2481.html (accessed on 2 November 2023).
- ComWinTop CWT-T01S Modbus Temperature Sensor. 2023. Available online: https://store.comwintop.com/products/rs485-modbus-water-proof-temperature-humidity-sensor-probe?variant=42249549054179 (accessed on 10 October 2023).
- Standard Methods Committee of the American Public Health Association. American Water Works Association. Water Environment Federation. 4500-nh3 nitrogen (ammonia). In Standard Methods for the Examination of Water and Wastewater; Lipps, W.C., Baxter, T.E., Braun-Howland, E., Eds.; APHA Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- AQUAREAD Ammonia Sensor. 2023. Available online: https://www.aquaread.com/sensors/ammonium-ammonia (accessed on 30 October 2023).
- Kacise KAN310 Modbus Ammonia Sensor. 2023. Available online: https://www.fluid-meter.com/sale-13682999-kan310-online-ammonia-nitrogen-sensor-rs485-modbus-convenient-to-connect-to-plc-dcs-patented-ammoniu.html (accessed on 7 October 2023).
- Sea Bird Scientific SUNA V2 Nitrate Sensor. 2023. Available online: https://www.seabird.com/nutrient-sensors/suna-v2-nitrate-sensor/family?productCategoryId=54627869922 (accessed on 30 October 2023).
- AQUAREAD Nitrate Sensor. 2023. Available online: https://www.aquaread.com/sensors/nitrate (accessed on 30 October 2023).
- Xylem 107066 Modbus Nitrate Sensor. 2023. Available online: https://www.xylemanalytics.com/en/general-product/id-151/ise-combination-sensor-for-ammonium-and-nitrate---wtw (accessed on 2 October 2023).
- DWAF Department of Water Affairs & Forestry. South African Water Quality Guidelines Volume 1 Domestic Water Use, 2nd ed.; DWAF: Pretoria, South Africa, 1996. [Google Scholar]
- DWAF Department of Water Affairs and Forestry. South African Water Quality Guidelines. Volume 2: Recreational Use, 2nd ed.; DWAF: Pretoria, South Africa, 1996. [Google Scholar]
- Republic of South Africa, Department of Environmental Affairs. South African Water Quality Guidelines for Coastal Marine Waters—Natural Environment and Mariculture Use; Department of Environmental Affairs: Cape Town, South Africa, 2018.
- Yang, X.; Ong, K.G.; Dreschel, W.R.; Zeng, K.; Mungle, C.S.; Grimes, C.A. Design of a Wireless Sensor Network for Long-term, In-Situ Monitoring of an Aqueous Environment. Sensors 2002, 2, 455–472. [Google Scholar] [CrossRef]
- Ryecroft, S.; Shaw, A.; Fergus, P.; Kot, P.; Hashim, K.S.; Tang, A.; Moody, A.; Conway, L. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. Karbala Int. J. Mod. Sci. 2021, 7, 3. [Google Scholar] [CrossRef]
- Rosero-Montalvo, P.D.; López-Batista, V.F.; Riascos, J.A.; Peluffo-Ordóñez, D.H. Intelligent WSN System for Water Quality Analysis Using Machine Learning Algorithms: A Case Study (Tahuando River from Ecuador). Remote Sens. 2020, 12, 1988. [Google Scholar] [CrossRef]
- Kofi Sarpong, A.-M.; Katsriku, F.A.; Abdulai, J.-A.; Engmann, F. Smart River Monitoring Using Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2020, 2020, 8897126. [Google Scholar] [CrossRef]
- Murphy, K.; Heery, B.; Sullivan, T.; Zhang, D.; Paludetti, L.; O’Connor, N.; Diamond, D.; Regan, F. A low-cost autonomous optical sensor for water quality monitoring. Talanta 2014, 132, 520–527. [Google Scholar] [CrossRef]
- O’Flynn, B.; Martínez-Català, R.; Harte, S.; O’Mathuna, C.; Cleary, J.; Slater, C.; Regan, F.; Diamond, D.; Murphy, H. SmartCoast: A Wireless Sensor Network for Water Quality Monitoring. In Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN 2007), Dublin, Ireland, 15–18 October 2007; pp. 815–816. [Google Scholar] [CrossRef]
- Seders, L.; Butler, C.S.; Lemmon, M.; Talley, J.; Maurice, P.A. LakeNet: An integrated sensor network for environmental sensing in lakes. Environ. Eng. Sci. 2007, 24, 183–191. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, Y.-C.; Zhang, J.-X.; Chen, Y.-H. IoT-Based Fish Farm Water Quality Monitoring System. Sensors 2022, 22, 6700. [Google Scholar] [CrossRef]
- Jáquez, A.D.B.; Herrera, M.T.A.; Celestino, A.E.M.; Ramírez, E.N.; Cruz, D.A.M. Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System. Water 2023, 15, 1351. [Google Scholar] [CrossRef]
- Razman, N.A.; Wan Ismail, W.Z.; Abd Razak, M.H.; Ismail, I.; Jamaludin, J. Design and analysis of water quality monitoring and filtration system for different types of water in Malaysia. Int. J. Environ. Sci. Technol. 2023, 20, 3789–3800. [Google Scholar] [CrossRef] [PubMed]
- Ubah, J.I.; Orakwe, L.C.; Ogbu, K.N.; Awu, J.I.; Ahaneku, I.E.; Chukwuma, E.C. Forecasting water quality parameters using artificial neural network for irrigation purposes. Sci. Rep. 2021, 11, 24438. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.; Islam, S.; Nasir, M. Predicting Water Quality using WSN and Machine Learning. Bachelor’s Thesis, Mawlana Bhashani Science and Technology, University Santosh, Tangail, Bangladesh, 2020. [Google Scholar]
- Aldhyani, T.H.H.; Al-Yaari, M.; Alkahtani, H.; Maashi, M. Water Quality Prediction Using Artificial Intelligence Algorithms. Appl. Bionics Biomech. 2020, 2020, 6659314. [Google Scholar] [CrossRef]
- Paepae, T.; Bokoro, P.N.; Kyamakya, K. From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive Review of the Relevant State-of the-Art. Sensors 2021, 21, 6971. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, T.; Wang, Z.; Lin, X.; Cai, X. A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction. Ecol. Indic. 2023, 146, 109882. [Google Scholar] [CrossRef]
- Stocker, M.D.; Pachepsky, Y.A.; Hill, R.L. Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms. Front. Artif. Intell. 2022, 4, 768650. [Google Scholar] [CrossRef] [PubMed]
- Naloufi, M.; Lucas, F.S.; Souihi, S.; Servais, P.; Janne, A.; Wanderley Matos De Abreu, T. Evaluating the Performance of Machine Learning Approaches to Predict the Microbial Quality of Surface Waters and to Optimize the Sampling Effort. Water 2021, 13, 2457. [Google Scholar] [CrossRef]
- Masindi, V. Dataset on physicochemical and microbial properties of raw water in four drinking water treatment plants based in South Africa. Data Brief 2020, 31, 105822. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef]
- Pasika, S.; Gandla, S. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [Google Scholar] [CrossRef]
- Morón-López, J.; Rodríguez-Sánchez, M.C.; Carreño, F.; Vaquero, J.; Pompa-Pernía, Á.G.; Mateos-Fernández, M.; Aguilar, J.A.P. Implementation of Smart Buoys and Satellite-Based Systems for the Remote Monitoring of Harmful Algae Bloom in Inland Waters. IEEE Sens. J. 2021, 21, 6990–6997. [Google Scholar] [CrossRef]
- Nguyen, D.; Phung, P.H. A Reliable and Efficient Wireless Sensor Network System for Water Quality Monitoring. In Proceedings of the 2017 International Conference on Intelligent Environments (IE), Seoul, Republic of Korea, 21–25 August 2017; pp. 84–91. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [Google Scholar] [CrossRef] [PubMed]
- Milánkovich, Á.; Klincsek, K. Wireless Sensor Network for Water Quality Monitoring. In European Project Space on Information and Communication Systems; SCITEPRESS: Setúbal, Portugal, 2015; pp. 28–47. [Google Scholar] [CrossRef]
- Demetillo, A.; Japitana, M.; Taboada, E. A system for monitoring water quality in a large aquatic area using wireless sensor network technology. Sustain. Environ. Res. 2019, 29, 12. [Google Scholar] [CrossRef]
- Kofi, A.-M.; Tapparello, C.; Heinzelman, W.; Katsriku, F.; Abdulai, J.-D. Water Quality Monitoring Using Wireless Sensor Networks: Current Trends and Future Research Directions. ACM Trans. Sens. Netw. 2017, 13, 1–41. [Google Scholar] [CrossRef]
- Safaric, S.; Malaric, K. ZigBee wireless standard. In Proceedings of the ELMAR 2006, Zadar, Croatia, 7–9 June 2006; pp. 259–262. [Google Scholar] [CrossRef]
- IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Networks. IEEE: Piscataway, NJ, USA, 22 April 2016; pp. 1–709. [CrossRef]
- IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016); IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems–Local and Metropolitan Area Networks–Specific Requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications–Redline. IEEE: Piscataway, NJ, USA, 26 February 2021; pp. 1–7524.
- IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002); IEEE Standard for Information technology–Local and Metropolitan Area Networks–Specific Requirements–Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPAN). IEEE: Piscataway, NJ, USA, 14 June 2005; pp. 1–700. [CrossRef]
- Sigfox Whitepapers. Available online: https://www.sigfox.com/ (accessed on 14 August 2023).
- Devalal, S.; Karthikeyan, A. LoRa Technology—An Overview. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [Google Scholar] [CrossRef]
- NB-IoT Whitepapers. Available online: https://www.narrowband.com/ (accessed on 25 August 2023).
- Labdaoui, N.; Nouvel, F.; Dutertre, S. Energy-efficient IoT Communications: A Comparative Study of Long-Term Evolution for Machines (LTE-M) and Narrowband Internet of Things (NB-IoT) Technologies. In Proceedings of the 2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia, 9–12 July 2023; pp. 823–830. [Google Scholar] [CrossRef]
- Olatinwo, S.O.; Joubert, T.-H. Enabling Communication Networks for Water Quality Monitoring Applications: A Survey. IEEE Access 2019, 7, 100332–100362. [Google Scholar] [CrossRef]
- Suciu, G.; Suciu, V.; Dobre, C.; Chilipirea, C. Tele-Monitoring System for Water and Underwater Environments Using Cloud and Big Data Systems. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 27–29 May 2015; pp. 809–813. [Google Scholar] [CrossRef]
- Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wirel. Commun. Mob. Comput. 2019, 2019, 6470359. [Google Scholar] [CrossRef]
- Myint, C.Z.; Gopal, L.; Aung, Y.L. Reconfigurable smart water quality monitoring system in IoT environment. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; pp. 435–440. [Google Scholar] [CrossRef]
- Akyildiz, I.; Pompili, D.; Melodia, T. Challenges for efficient communication in underwater acoustic sensor networks. ACM SIGBED Rev. 2004, 1, 3–8. [Google Scholar] [CrossRef]
- Marais, J.; Malekian, R.; Ye, N.; Wang, R. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application. J. Sens. 2016, 2016, 9857568. [Google Scholar] [CrossRef]
- Sehgal, A.; Tumar, I.; Schonwalder, J. Variability of available capacity due to the effects of depth and temperature in the underwater acoustic communication channel. In Proceedings of the Oceans 2009-Europe, Bremen, Germany, 11–14 May 2009. [Google Scholar] [CrossRef]
- Gallagher, M. Effect of topology on network bandwidth, Master of Engineering (Hons.). Master’s Thesis, Faculty of Informatics, University of Wollongong, Wollongong, NSW, Australia, 1998. Available online: https://ro.uow.edu.au/theses/2539 (accessed on 16 July 2023).
- Pottie, G.J.; Kaiser, W.J. Wireless integrated network sensors. Commun. ACM 2000, 43, 51–58. [Google Scholar] [CrossRef]
- Watt, A.J.; Phillips, M.R.; Campbell, C.E.; Wells, I.; Hole, S. Wireless Sensor Networks for monitoring underwater sediment transport. Sci. Total Environ. 2019, 667, 160–165. [Google Scholar] [CrossRef]
- Júnior, A.C.D.S.; Munoz, R.; Quezada, M.D.L.Á.; Neto, A.V.L.; Hassan, M.M.; De Albuquerque, V.H.C. Internet of Water Things: A Remote Raw Water Monitoring and Control System. IEEE Access 2021, 9, 35790–35800. [Google Scholar] [CrossRef]
- Luethi, R.; Phillips, M. Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation. Geogr. Helv. 2016, 71, 121–131. [Google Scholar] [CrossRef]
- Rokem, A.; Kay, K. Fractional ridge regression: A fast, interpretable reparameterization of ridge regression. GigaScience 2020, 9, giaa133. [Google Scholar] [CrossRef] [PubMed]
- Ogutu, J.O.; Schulz-Streeck, T.; Piepho, H.P. Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012, 6 (Suppl. 2), S10. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression. Center for Bioinformatics and Molecular Biostatistics; University of California: San Francisco, CO, USA, 2004; Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on 10 August 2023).
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Boswell, D. Introduction to Support Vector Machines; Departement of Computer Science and Engineering, University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Kramer, O. Unsupervised K-nearest neighbor regression. arXiv 2011, arXiv:1107.3600. [Google Scholar]
- Xiao, F.; Wang, Y.; He, L.; Wang, H.; Li, W.; Liu, Z. Motion Estimation from Surface Electromyogram Using Adaboost Regression and Average Feature Values. IEEE Access 2019, 7, 13121–13134. [Google Scholar] [CrossRef]
- Koduri, S.; Gunisetti, L.; Ramesh, C.; Mutyalu, K.; Ganesh, D. Prediction of crop production using adaboost regression method. J. Phys. Conf. Ser. 2019, 1228, 012005. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Robeson, S.M.; Willmott, C.J. Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE 2023, 18, e0279774. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Sessions, V.; Valtorta, M. The Effects of Data Quality on Machine Learning Algorithms. ICIQ 2006, 6, 485–498. [Google Scholar]
- Arimie, C.O.; Biu, E.O.; Ijomah, M.A. Outlier Detection and Effects on Modeling. Open Access Libr. J. 2020, 7, e6619. [Google Scholar] [CrossRef]
- Li, A.H.; Bradic, J. Boosting in the Presence of Outliers: Adaptive Classification with Nonconvex Loss Functions. J. Am. Stat. Assoc. 2017, 113, 660–674. [Google Scholar] [CrossRef]
WQI | Chemical/Biological/Measurement Methods | Electronic Measurement Sensors |
---|---|---|
Turbidity |
| |
Total dissolved solids (TDS) |
| |
pH |
| |
Chloride |
| |
Fecal coliform |
|
|
E. coli |
|
|
Conductivity (EC) |
| |
Algae |
| |
Clarity |
|
|
Enterococci (Fecal streptococci) |
|
|
Coliphages |
|
|
Temperature |
| |
Ammonia |
| |
Nitrate |
|
|
Set | Parameters |
---|---|
Set A | pH, conductivity, chloride, turbidity, nitrates, and chlorophyll |
Set B | pH, ammonium, chloride, nitrites, iron, manganese, phosphate, and sulphate |
Evaluation Metric | Parameter Set | Evaluation Score | |
---|---|---|---|
MAE | RMSE | ||
Ridge regression | Set A | 28.65 | 37.50 |
Set B | 36.67 | 83.26 | |
Random forest regressor | Set A | 36.63 | 58.14 |
Set B | 46.58 | 91.22 | |
Stochastic gradient boosting | Set A | 45.36 | 73.26 |
Set B | 39.17 | 88.99 | |
Support vector machine | Set A | 19.46 | 37.20 |
Set B | 26.01 | 88.18 | |
k-nearest neighbors | Set A | 12.08 | 19.04 |
Set B | 28.96 | 90.56 | |
AdaBoost | Set A | 15.42 | 20.14 |
Set B | 13.32 | 23.34 |
Set A | Set B | |
---|---|---|
26.27 | 31.79 | |
40.88 | 77.59 |
Model | ||
---|---|---|
Ridge regression | 32.66 | 60.38 |
Random forest regressor | 41.61 | 74.68 |
Stochastic gradient boosting | 42.27 | 81.13 |
Support vector machine | 22.74 | 62.69 |
k-nearest neighbors | 20.52 | 54.80 |
AdaBoost | 14.37 | 21.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, Y.; Walingo, T. Smart Water Quality Monitoring with IoT Wireless Sensor Networks. Sensors 2024, 24, 2871. https://doi.org/10.3390/s24092871
Singh Y, Walingo T. Smart Water Quality Monitoring with IoT Wireless Sensor Networks. Sensors. 2024; 24(9):2871. https://doi.org/10.3390/s24092871
Chicago/Turabian StyleSingh, Yurav, and Tom Walingo. 2024. "Smart Water Quality Monitoring with IoT Wireless Sensor Networks" Sensors 24, no. 9: 2871. https://doi.org/10.3390/s24092871
APA StyleSingh, Y., & Walingo, T. (2024). Smart Water Quality Monitoring with IoT Wireless Sensor Networks. Sensors, 24(9), 2871. https://doi.org/10.3390/s24092871