AI Concepts for System of Systems Dynamic Interoperability
Abstract
:1. Introduction
1.1. Contribution
1.2. Study Scope
1.3. Background
1.4. Learning-Based Approach
2. Research Methodology
2.1. Structure of the Sections
2.2. Search Results
3. Key Aspects of SoS Interoperability
- Autonomy: constituent systems are functionally independent;
- Belonging: constituent systems choose what SoS to belong to at run-time;
- Connectivity: constituent systems can exchange information with each other at all times;
- Heterogeneity: constituent systems use heterogeneous technologies and software interfaces;
- Emergence: constituent systems cooperate to exhibit new or improved functionality related to SoS-level goals.
- Autonomy: constituent systems should be able to pursue system-level goals independently.
- Runtime Operation: new systems and policies should be integrated and responded to swiftly and appropriately.
- Fault Resilience: a SoCPS should gracefully adapt, potentially with degraded functionality, in the event of errors or changes in the constituent CPSs.
- Information Integration: all available data/metadata sources and knowledge representations should be utilized.
- Resource Efficiency: a SoCPS should implement the policies efficiently to minimize costs, including both monetary and environmental aspects.
- Security: privileged information should not be leaked to unprivileged parties.
- Generality: a proposed solution should be applicable to a wide variety of SoCPSs, thus being standard agnostic.
4. Interoperability Overview
4.1. Semantic Interoperability
4.2. Dynamic Interoperability
4.3. Operational Interoperability
5. Towards Automatic Interoperability
5.1. Ontology Alignment
- Rational: representation of a real-world problem conceptualizing explicit specifications;
- Flexible: to be transferred to other applications;
- Extendable: can be utilized for other domains with different semantic structures;
- Dynamic: models should be applicable to run-time-operations of IoT frameworks;
- Automated Parameter Updates: must be boosted by ML techniques where weights or interpretation schemes are learnt and evolved;
- Visualization and Comparison: the model must be equipped with an illustrative representation of metadata and results where conclusive comparisons can be drawn.
5.2. Transcoder Architectures
5.3. Modular Neural Networks
5.4. Emergent Communication
5.5. Concept-Based Learning and Reasoning
5.6. Metalearning
6. Open Questions and Future Research Challenges
6.1. Development of ML-Based Methods for SoS Interoperability
6.2. SoCPS Engineering Challenges
- Lack of open datasets: There is a lack of open datasets suitable for end-to-end optimization and potential logistical and practical issues with gathering data from business-critical automation systems. Addressing these engineering issues requires further work, which could involve sharing digital twins and developing open testbeds.
- Privacy and security concerns: Privacy and security aspects are critical for the transfer of new SoCPS technologies developed in such model environments to real-world applications, and the problems to establish privacy and security while allowing for systems to share the information required for learning and optimization are challenging. These challenges are partially addressed in the fields of federated ML and ML under fully homomorphic encryption, see for example [77,78], but the solutions developed need to be adapted to the SoCPS domain.
- Lack of protocols for production environments: Furthermore, the training and validation protocols developed need to be aligned with the requirements of production environments, and a working culture which often emphasises the importance of explainable and predictable solutions. This includes developing effective exception handling solutions for graceful degradation in the case of M2M communication failures, etc.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hankel, M.; Rexroth, B. The Reference architectural model industrie 4.0 (RAMI 4.0). ZVEI 2015, 2, 2. [Google Scholar]
- Lin, S.W.; Miller, B.; Durand, J.; Bleakley, G.; Chigani, A.; Martin, R.; Murphy, B.; Crawford, M. The Industrial Internet of Things Volume G1: Reference Architecture; Version 1.8; IIC: Boston, MA, USA, 2017. [Google Scholar]
- The Eclipse-Arrowhead Consortium. Eclipse-Arrowhead. Arrowhead Official Website. 2020. Available online: www.arrowhead.eu (accessed on 4 February 2020).
- Fiware. FIWARE. Fiware: The Open Source Platform for Our Smart Digital Future. 2020. Available online: www.fiware.org (accessed on 4 February 2020).
- BaSys. Eclipse BaSyx. 2020. Available online: www.eclipse.org/basyx (accessed on 4 February 2020).
- OMA. OMA SpecWorks. Lightweight M2M (LWM2M). 2020. Available online: https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/ (accessed on 4 February 2020).
- Maier, M.W. Architecting principles for systems-of-systems. Syst. Eng. J. Int. Counc. Syst. Eng. 1998, 1, 267–284. [Google Scholar] [CrossRef]
- Boardman, J.; Sauser, B. System of Systems-the meaning of of. In Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering, Los Angeles, CA, USA, 24–26 April 2006. [Google Scholar]
- Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 223–236. [Google Scholar] [CrossRef]
- Dragoni, N.; Giallorenzo, S.; Lluch-Lafuente, A.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering; Spring: Berlin/Heidelberg, Germany, 2017; pp. 195–216. [Google Scholar]
- Delsing, J. Smart City Solution Engineering. Smart Cities 2021, 4, 643–661. [Google Scholar] [CrossRef]
- Geraci, A.; Katki, F.; McMonegal, L.; Meyer, B.; Lane, J.; Wilson, P.; Radatz, J.; Yee, M.; Porteous, H.; Springsteel, F. IEEE Standard Computer Dictionary; IEEE Press: New York, NY, USA, 1991. [Google Scholar]
- Derhamy, H.; Eliasson, J.; Delsing, J. IoT Interoperability—On-Demand and Low Latency Transparent Multiprotocol Translator. IEEE Internet Things J. 2017, 4, 1754–1763. [Google Scholar] [CrossRef]
- Javed, S. Towards Digitization and Machine learning Automation for Cyber-Physical System of Systems. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2022. [Google Scholar]
- Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2021, 55, 895–943. [Google Scholar] [CrossRef]
- Moutinho, F.; Paiva, L.; Köpke, J.; Maló, P. Extended Semantic Annotations for Generating Translators in the Arrowhead Framework. IEEE Trans. Ind. Inform. 2018, 14, 2760–2769. [Google Scholar] [CrossRef]
- Novo, O.; Francesco, M.D. Semantic Interoperability in the IoT: Extending the Web of Things Architecture. ACM Trans. Internet Things 2020, 1, 6. [Google Scholar] [CrossRef]
- Nilsson, J.; Sandin, F. Semantic Interoperability in Industry 4.0: Survey of Recent Developments and Outlook. In Proceedings of the 2018 IEEE 15th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 127–132. [Google Scholar]
- Shadbolt, N.; Berners-Lee, T.; Hall, W. The semantic web revisited. IEEE Intell. Syst. 2006, 21, 96–101. [Google Scholar] [CrossRef]
- Santipantakis, G.M.; Vouros, G.A.; Doulkeridis, C.; Vlachou, A.; Andrienko, G.; Andrienko, N.; Fuchs, G.; Garcia, J.M.C.; Martinez, M.G. Specification of semantic trajectories supporting data transformations for analytics: The datAcron ontology. In Proceedings of the 13th International Conference on Semantic Systems, Amsterdam, The Netherlands, 12–13 September 2017; pp. 17–24. [Google Scholar]
- Javed, S.; Usman, M.; Sandin, F.; Liwicki, M.; Mokayed, H. Deep Ontology Alignment Using a Natural Language Processing Approach for Automatic M2M Translation in IIoT. Sensors 2023, 23, 8427. [Google Scholar] [CrossRef]
- Smith, B. Ontology. In The Furniture of the World; Brill Rodopi: Leiden, The Netherlands, 2012; pp. 47–68. [Google Scholar]
- Mayer, S.; Hodges, J.; Yu, D.; Kritzler, M.; Michahelles, F. An open semantic framework for the industrial internet of things. IEEE Intell. Syst. 2017, 32, 96–101. [Google Scholar] [CrossRef]
- Horsch, M.T.; Chiacchiera, S.; Seaton, M.A.; Todorov, I.T.; Šindelka, K.; Lísal, M.; Andreon, B.; Kaiser, E.B.; Mogni, G.; Goldbeck, G.; et al. Ontologies for the Virtual Materials Marketplace. KI-Künstliche Intell. 2020, 34, 423–428. [Google Scholar] [CrossRef]
- Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Ranathunga, S.; Lee, E.S.A.; Prifti Skenduli, M.; Shekhar, R.; Alam, M.; Kaur, R. Neural machine translation for low-resource languages: A survey. ACM Comput. Surv. 2023, 55, 229. [Google Scholar] [CrossRef]
- Niemöller, J.; Mokrushin, L.; Kumar Mohalik, S.; Vlachou-Konchylaki, M.; Sarmonikas, G. Cognitive Processes for Adaptive Intent-Based Networking; Technical Report; Ericsson Research: Ottawa, ON, Canada, 2020. [Google Scholar]
- Nilsson, J.; Delsing, J.; Sandin, F. Autoencoder Alignment Approach to Run-Time Interoperability for System of Systems Engineering. In Proceedings of the 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES), Reykjavík, Iceland, 8–10 July 2020; pp. 139–144. [Google Scholar]
- Amrani, N.E.A.; Youssfi, M.; Bouattane, O.; Abra, O.E.K. Interoperability between Heterogeneous Multi-agent Systems Recommended by FIPA: Towards a Weakly Coupled Approach Based on a Network of Recurrent Neurons of the LSTM type. In Proceedings of the 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 4–6 September 2020; pp. 1–6. [Google Scholar]
- Delsing, J. IoT Automation: Arrowhead Framework; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cubek, R.; Ertel, W.; Palm, G. A Critical Review on the Symbol Grounding Problem as an Issue of Autonomous Agents. In Proceedings of the KI 2015: Advances in Artificial Intelligence, Dresden, Germany, 21–25 September 2015; pp. 256–263. [Google Scholar]
- Nilsson, J.; Sandin, F.; Delsing, J. Interoperability and machine-to-machine translation model with mappings to machine learning tasks. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 284–289. [Google Scholar]
- Gürdür, D.; Asplund, F. A systematic review to merge discourses: Interoperability, integration and cyber-physical systems. J. Ind. Inf. Integr. 2018, 9, 14–23. [Google Scholar] [CrossRef]
- Horsch, M.T.; Chiacchiera, S.; Bami, Y.; Schmitz, G.J.; Mogni, G.; Goldbeck, G.; Ghedini, E. Reliable and interoperable computational molecular engineering: 2. Semantic interoperability based on the European Materials and Modelling Ontology. arXiv 2020, arXiv:2001.04175. [Google Scholar]
- Stevens, R.; Rector, A.; Hull, D. What is an ontology? Ontogenesis 2010. [Google Scholar]
- Mayer, S.; Verborgh, R.; Kovatsch, M.; Mattern, F. Smart configuration of smart environments. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1247–1255. [Google Scholar] [CrossRef]
- Campos-Rebelo, R.; Moutinho, F.; Paiva, L.; Maló, P. Annotation Rules for XML Schemas with Grouped Semantic Annotations. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 5469–5474. [Google Scholar] [CrossRef]
- Sándor, M. An analysis of basic interoperability related terms, system of interoperability types. Acad. Appl. Res. Mil. Sci. 2002, 1, 117–132. [Google Scholar]
- Mantravadi, S.; Chen, L.; Møller, C. Multi-agent manufacturing execution system (MES): Concept, architecture & ML algorithm for a smart factory case. In Proceedings of the 21st International Conference on Enterprise Information Systems, ICEIS 2019, Heraklion, Greece, 3–5 May 2019; pp. 477–482. [Google Scholar]
- Ehrig, M. Ontology Alignment: Bridging the Semantic Gap; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Jain, P.; Hitzler, P.; Sheth, A.P.; Verma, K.; Yeh, P.Z. Ontology alignment for linked open data. In Proceedings of the International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2010; pp. 402–417. [Google Scholar]
- Isaac, A.; Van Der Meij, L.; Schlobach, S.; Wang, S. An empirical study of instance-based ontology matching. In The Semantic Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 253–266. [Google Scholar]
- Wang, T. Aligning the large-scale ontologies on schema-level for weaving Chinese linked open data. Cluster Comput. 2019, 22, 5099–5114. [Google Scholar] [CrossRef]
- Maló, P.M.N. Hub-and-Spoke Interoperability: An Out of the Skies Approach for Large-Scale Data Interoperability. Ph.D. Thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisbon, Portugal, 2013. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; pp. 5998–6008. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar variational autoencoder. In Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, Sydney, Australia, 6–11 August 2017; pp. 1945–1954. [Google Scholar]
- Ristoski, P.; Paulheim, H. RDF2Vec: RDF graph embeddings for data mining. In Proceedings of the International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 498–514. [Google Scholar]
- Holter, O.M.; Myklebust, E.B.; Chen, J.; Jimenez-Ruiz, E. Embedding OWL ontologies with OWL2Vec. In Proceedings of the CEUR Workshop Proceedings; Technical University of Aachen: Aachen, Germany, 2019; Volume 2456, pp. 33–36. [Google Scholar]
- Roziere, B.; Lachaux, M.A.; Chanussot, L.; Lample, G. Unsupervised translation of programming languages. Adv. Neural Inf. Process. Syst. 2020, 33, 2–4. [Google Scholar]
- Devin, C.; Gupta, A.; Darrell, T.; Abbeel, P.; Levine, S. Learning modular neural network policies for multi-task and multi-robot transfer. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2169–2176. [Google Scholar]
- Qiao, J.; Zhang, Z.; Bo, Y. An online self-adaptive modular neural network for time-varying systems. Neurocomputing 2014, 125, 7–16. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Qiao, J.; Guo, X. A feature clustering-based adaptive modular neural network for nonlinear system modeling. ISA Trans. 2020, 100, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057. [Google Scholar]
- Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6077–6086. [Google Scholar]
- Nowak, M.A.; Krakauer, D.C. The evolution of language. Proc. Natl. Acad. Sci. USA 1999, 96, 8028–8033. [Google Scholar] [CrossRef]
- Gupta, A.; Lowe, R.; Foerster, J.; Kiela, D.; Pineau, J. Seeded self-play for language learning. In Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN), Hong Kong, China, 3 November 2019; pp. 62–66. [Google Scholar]
- Resnick, C.; Gupta, A.; Foerster, J.; Dai, A.M.; Cho, K. Capacity, bandwidth, and compositionality in emergent language learning. arXiv 2019, arXiv:1910.11424. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Kim, J.; Oh, A. Emergent Communication under Varying Sizes and Connectivities. Adv. Neural Inf. Process. Syst. 2021, 34, 5–8. [Google Scholar]
- Tucker, M.; Li, H.; Agrawal, S.; Hughes, D.; Sycara, K.P.; Lewis, M.; Shah, J. Emergent Discrete Communication in Semantic Spaces. In Proceedings of the Advances in Neural Information Processing Systems; Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2021. [Google Scholar]
- Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science 2015, 350, 1332–1338. [Google Scholar] [CrossRef]
- Cao, K.; Brbić, M.; Leskovec, J. Concept Learners for Few-Shot Learning. In Proceedings of the International Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021. [Google Scholar]
- Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J.B.; Wu, J. The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. arXiv 2019, arXiv:1904.12584. [Google Scholar]
- Han, C.; Mao, J.; Gan, C.; Tenenbaum, J.B.; Wu, J. Visual Concept Metaconcept Learning. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), San Diago, CA, USA, 8–10 December 2019. [Google Scholar]
- Kim, T.; Kim, S.; Bengio, Y. Visual Concept Reasoning Networks. arXiv 2020, arXiv:2008.11783. [Google Scholar] [CrossRef]
- Emruli, B.; Sandin, F.; Delsing, J. Vector space architecture for emergent interoperability of systems by learning from demonstration. Biol. Inspired Cogn. Archit. 2015, 11, 53–64. [Google Scholar] [CrossRef]
- Wang, P.W.; Donti, P.; Wilder, B.; Kolter, Z. Satnet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6545–6554. [Google Scholar]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning. In Proceedings of the NIPS, San Diago, CA, USA, 7–12 December 2015. [Google Scholar]
- Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: The Next Generation. arXiv 2020, arXiv:2007.04074. [Google Scholar]
- Nichol, A.; Achiam, J.; Schulman, J. On first-order meta-learning algorithms. arXiv 2018, arXiv:1803.02999. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Wang, X.; Ye, Y.; Gupta, A. Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6857–6866. [Google Scholar]
- Pourpanah, F.; Abdar, M.; Luo, Y.; Zhou, X.; Wang, R.; Lim, C.; Wang, X. A Review of Generalized Zero-Shot Learning Methods. arXiv 2020, arXiv:2011.08641. [Google Scholar] [CrossRef]
- Shi, X.; Salewski, L.; Schiegg, M.; Akata, Z.; Welling, M. Relational Generalized Few-Shot Learning. arXiv 2020, arXiv:1907.09557. [Google Scholar]
- Sun, X.; Zhang, P.; Liu, J.K.; Yu, J.; Xie, W. Private Machine Learning Classification Based on Fully Homomorphic Encryption. IEEE Trans. Emerg. Top. Comput. 2020, 8, 352–364. [Google Scholar] [CrossRef]
- QaisarAhmadAlBadawi, A.; Chao, J.; Lin, J.; Mun, C.F.; Jie, S.J.; Tan, B.H.M.; Nan, X.; Khin, A.M.M.; Chandrasekhar, V. Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data with GPUs. IEEE Trans. Emerg. Top. Comput. 2020, 9, 1330–1343. [Google Scholar] [CrossRef]
Databases | Searching Strings and Keywords | Number of Articles | Date of Acquisition | ||
---|---|---|---|---|---|
Title, Abstract, Keywords | Entire Article | ||||
Scopus | Primary: | Dynamic Interoperability, SoS, Learning based Approach | 1876 | 3520 | 20 April 2023 |
Secondary: | Operation Interoperability, Semantic Translation, Cyber Physical Systems | 2556 | 4309 | 20 April 2023 | |
Emergent Communication, Ontology Alignment, Message Translation | 3965 | 4277 | 20 April 2023 | ||
Google Scholar | Primary: | Dynamic Interoperability, SoS, Learning based Approach | 50,978 | 150,903 | 20 April 2023 |
Secondary: | Operation Interoperability, Semantic Translation, Cyber Physical Systems | 45,881 | 90,034 | 20 April 2023 | |
Dynamic Interoperability, SoS, Learning based Approach | 61,124 | 54,901 | 20 April 2023 |
References | Run-Time (Dynamic) vs. Pre-Defined (Static) Interoperability, or Generic AI Concept | Rule-Based (Symbolic) or Learning-Based (Subsymbolic) | Utility- or Goal-Based Cooperation (Yes/No) | Fault Resilience Aspects (Yes/No) | Resource Efficiency Aspects (Yes/No) |
---|---|---|---|---|---|
[13] | static | symbolic | no | no | yes |
[44] | static | symbolic | no | yes | yes |
[42] | static | symbolic | yes | no | yes |
[41] | static | symbolic | yes | no | yes |
[16] | static | symbolic | yes | yes | yes |
[29] | static | subsymbolic | no | no | no |
[69] | dynamic | symbolic | no | no | no |
[70] | dynamic | symbolic | no | no | no |
[71] | dynamic | symbolic | no | no | no |
[72] | dynamic | symbolic | no | no | yes |
[73] | dynamic | symbolic | no | no | yes |
[36] | dynamic | symbolic | yes | no | no |
[16] | dynamic | symbolic | yes | no | no |
[57] | dynamic | symbolic | yes | no | no |
[39] | dynamic | symbolic | yes | yes | no |
[27] | dynamic | symbolic | yes | yes | yes |
[28] | dynamic | subsymbolic | no | no | yes |
[68] | dynamic | subsymbolic | no | yes | no |
[29] | dynamic | subsymbolic | yes | no | no |
[58] | dynamic | subsymbolic | yes | no | no |
[23] | dynamic | subsymbolic | yes | no | yes |
[43] | dynamic | subsymbolic | yes | no | yes |
[61] | dynamic | subsymbolic | yes | yes | no |
[62] | dynamic | subsymbolic | yes | yes | no |
[59] | dynamic | subsymbolic | yes | yes | yes |
[48] | concept | subsymbolic | no | no | no |
[45] | concept | subsymbolic | no | no | no |
[49] | concept | subsymbolic | no | no | no |
[67] | concept | subsymbolic | no | no | no |
[65] | concept | subsymbolic | no | no | yes |
[66] | concept | subsymbolic | no | no | yes |
[63] | concept | subsymbolic | no | no | yes |
[76] | concept | subsymbolic | no | no | yes |
[64] | concept | subsymbolic | no | no | yes |
[74] | concept | subsymbolic | no | yes | no |
[52] | concept | subsymbolic | yes | yes | yes |
[51] | concept | subsymbolic | yes | yes | yes |
[53] | concept | subsymbolic | yes | yes | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsson, J.; Javed, S.; Albertsson, K.; Delsing, J.; Liwicki, M.; Sandin, F. AI Concepts for System of Systems Dynamic Interoperability. Sensors 2024, 24, 2921. https://doi.org/10.3390/s24092921
Nilsson J, Javed S, Albertsson K, Delsing J, Liwicki M, Sandin F. AI Concepts for System of Systems Dynamic Interoperability. Sensors. 2024; 24(9):2921. https://doi.org/10.3390/s24092921
Chicago/Turabian StyleNilsson, Jacob, Saleha Javed, Kim Albertsson, Jerker Delsing, Marcus Liwicki, and Fredrik Sandin. 2024. "AI Concepts for System of Systems Dynamic Interoperability" Sensors 24, no. 9: 2921. https://doi.org/10.3390/s24092921
APA StyleNilsson, J., Javed, S., Albertsson, K., Delsing, J., Liwicki, M., & Sandin, F. (2024). AI Concepts for System of Systems Dynamic Interoperability. Sensors, 24(9), 2921. https://doi.org/10.3390/s24092921