Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties of SWCNT Layers
3.2. Thermoelectric Properties of SWCNT Layers
3.3. Performance of Thin-Film Thermoelectric Generators
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslamian, M. Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 2017, 9, 3. [Google Scholar] [CrossRef]
- Fiedor, P.; Ortyl, J. A new approach to micromachining: High-precision and innovative additive manufacturing solutions based on photopolymerization technology. Materials 2020, 13, 2951. [Google Scholar] [CrossRef]
- Ye, D.; Ding, Y.; Su, J.; Yin, Z.; Huang, Y.A. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small 2018, 14, 1703521. [Google Scholar] [CrossRef]
- Abbel, R.; Galagan, Y.; Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 2018, 20, 1701190. [Google Scholar] [CrossRef]
- Benchirouf, A.; Kanoun, O. Inkjet-printed multiwalled carbon nanotube dispersion as wireless passive strain sensor. Sensors 2024, 24, 1585. [Google Scholar] [CrossRef]
- Calvert, P. Inkjet printing for Materials and devices. Chem. Mater. 2001, 13, 3299–3305. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Grüner, G. Percolation in Transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517. [Google Scholar] [CrossRef]
- Seki, Y.; Takashiri, M. Freestanding bilayers of drop-cast single-walled carbon nanotubes and electropolymerized poly(3,4-ethylenedioxythiophene) for thermoelectric energy harvesting. Org. Electron. 2020, 76, 105478. [Google Scholar] [CrossRef]
- Yonezawa, S.; Chiba, T.; Seki, Y.; Takashiri, M. Origin of n type properties in single wall carbon nanotube films with anionic surfactants investigated by experimental and theoretical analyses. Sci. Rep. 2021, 11, 5758. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef]
- Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T.M. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508. [Google Scholar] [CrossRef]
- Howard, I.A.; Abzieher, T.; Hossain, I.M.; Eggers, H.; Schackmar, F.; Ternes, S.; Richards, B.S.; Lemmer, U.; Paetzold, U.W. Coated and printed perovskites for photovoltaic applications. Adv. Mater. 2019, 31, 1806702. [Google Scholar] [CrossRef]
- Swartwout, R.; Hoerantner, M.T.; Bulović, V. Scalable deposition methods for large-area production of perovskite thin films. Energy Environ. Mater. 2019, 2, 119–145. [Google Scholar] [CrossRef]
- DiSalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.-L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.-G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Bharti, M.; Singh, A.; Samanta, S.; Aswal, D.K. Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 2018, 93, 270–310. [Google Scholar] [CrossRef]
- Bharti, M.; Singh, A.; Samanta, S.; Aswal, D.K. Effect of annealing temperature on thermoelectric properties of bismuth telluride thick film deposited by DC magnetron sputtering. Surf. Coat. Technol. 2020, 393, 125808. [Google Scholar]
- Kobayashi, A.; Konagaya, R.; Tanaka, S.; Takashiri, M. Optimized structure of tubular thermoelectric generators using n-type Bi2Te3 and p-type Sb2Te3 thin films on flexible substrate for energy harvesting. Sens. Actuators A 2020, 313, 112199. [Google Scholar] [CrossRef]
- Goncalves, L.M.; Couto, C.; Alpuim, P.; Rolo, A.G.; Völklein, F.; Correia, J.H. Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 2010, 518, 2816–2821. [Google Scholar] [CrossRef]
- Kato, K.; Hatasako, Y.; Uchino, M.; Nakata, Y.; Suzuki, Y.; Hayakawa, T.; Adachi, C.; Miyazaki, K. Flexible porous bismuth telluride thin films with enhanced figure of merit using micro-phase separation of block copolymer. Adv. Mater. Interfaces 2014, 1, 1300015. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O‘Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Norimasa, O.; Chiba, T.; Hase, M.; Komori, T.; Takashiri, M. Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing. J. Alloys Compd. 2022, 898, 162889. [Google Scholar] [CrossRef]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, M.-S.; Lee, S.; Kim, C.; Kim, Y.-J. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 2014, 23, 105002. [Google Scholar] [CrossRef]
- Haras, M.; Skotnicki, T. Thermoelectricity for IoT—A review. Nano Energy 2018, 54, 461–476. [Google Scholar] [CrossRef]
- Hasan, M.N.; Nafea, M.; Nayan, N.; Mohamed Ali, M.S. Thermoelectric generator: Materials and applications in wearable health monitoring sensors and Internet of Things devices. Adv. Mater. Technol. 2022, 7, 2101203. [Google Scholar] [CrossRef]
- Tuoi, T.T.K.; Van Toan, N.; Ono, T. Heat storage thermoelectric generator as an electrical power source for wireless IoT sensing systems. Int. J. Energy Res. 2021, 45, 15557–15568. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Gao, P. Thermoelectric-powered sensors for Internet of Things. Micromachines 2023, 14, 31. [Google Scholar] [CrossRef]
- Kim, S.J.; We, J.H.; Cho, B.J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959–1965. [Google Scholar] [CrossRef]
- Dziedzic, A.; Wójcik, S.; Gierczak, M.; Bernik, S.; Brguljan, N.; Reinhardt, K.; Körner, S. Planar thermoelectric microgenerators in application to power RFID tags. Sensors 2024, 24, 1646. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Chen, J.; Hamon, M.A.; Hu, H.; Chen, Y.; Rao, A.M.; Eklund, P.C.; Haddon, R.C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Maruyama, S.; Kojima, R.Y.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234. [Google Scholar]
- Seki, Y.; Takahashi, M.; Takashiri, M. Effects of different electrolytes and film thicknesses on structural and thermoelectric properties of electropolymerized poly(3,4-ethylenedioxythiophene) films. RSC Adv. 2019, 9, 15957–15965. [Google Scholar] [CrossRef]
- Jin, L.; Sun, T.; Zhao, W.; Wang, L.; Jiang, W. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application. J. Power Sources 2021, 496, 229838. [Google Scholar] [CrossRef]
- Kim, S.-K.; Liu, T.; Wang, X. Flexible, highly durable, and thermally stable SWCNT/polyimide transparent electrodes. ACS Appl. Mater. Interfaces 2015, 7, 20495–21004. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Hinterding, R.; Feldhoff, A. High power factor vs. high zT—A review of thermoelectric materials for high-temperature application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef]
- Nonoguchi, Y.; Nakano, M.; Murayama, T.; Hagino, H.; Hama, S.; Miyazaki, K.; Matsubara, R.; Nakamura, M.; Kawai, T. Simple salt-coordinated n-type nanocarbon materials stable in Air. Adv. Funct. Mater. 2016, 26, 3021–3028. [Google Scholar] [CrossRef]
- Oshima, K.; Yanagawa, Y.; Asano, H.; Shiraishi, Y.; Toshima, N. Improvement of stability of n-type super growth CNTs by hybridization with polymer for organic hybrid thermoelectrics. Synth. Met. 2017, 225, 81–85. [Google Scholar] [CrossRef]
- Nakashima, Y.; Nakashima, N.; Fujigaya, T. Development of air-stable n-type single-walled carbon nanotubes by doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazole and their thermoelectric properties. Synth. Met. 2017, 225, 76–80. [Google Scholar] [CrossRef]
- Bark, H.; Lee, W.; Lee, H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules. Macromol. Res. 2015, 23, 795–801. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, O.H.; Kang, Y.H.; Jang, K.-S.; Cho, S.Y.; Yoo, Y. A facile preparation route of n-type carbon buckypaper and its enhanced thermoelectric performance. Compos. Sci. Technol. 2017, 153, 32–39. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, K. Textile-based thermoelectric generators and their applications. Energy Environ. Mater. 2020, 3, 67–79. [Google Scholar] [CrossRef]
- Amma, Y.; Miura, K.; Nagata, S.; Nishi, T.; Miyake, S.; Miyazaki, K.; Takashiri, M. Ultra-long air-stability of n-type carbon nanotube films with low thermal conductivity and all-carbon thermoelectric generators. Sci. Rep. 2022, 12, 21603. [Google Scholar] [CrossRef]
- Komori, T.; Tamai, R.; Nakazawa, Y.; Hoshino, K.; Abe, H.; Tanaka, S.; Takashiri, M. Stable photothermal conversion in single-walled carbon nanotube device with pn-junction under uniform sunlight irradiation. Mater. Today Commun. 2024, 38, 108436. [Google Scholar] [CrossRef]
- Oya, T.; Ogino, Y. Production of electrically conductive paper by adding carbon nanotubes. Carbon 2008, 46, 169–171. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wong, C.L.; Madhavi, S. Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology 2012, 23, 495401. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Okamoto, N.; Abe, R. Development and evaluation of “thermoelectric power-generating paper” using carbon nanotube-composite paper. Jpn. J. Appl. Phys. 2017, 56, 06GE10. [Google Scholar]
- Uetani, K.; Hatori, K. Thermal conductivity analysis and applications of nanocellulose materials. Sci. Technol. Adv. Mater. 2017, 18, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yun, K.N.; Yu, H.-Y.; Shim, J.H.; Lee, C.J. High-performance carbon nanotube thin-film transistors on flexible paper substrates. Appl. Phys. Lett. 2015, 106, 103106. [Google Scholar] [CrossRef]
- Shobin, L.R.; Manivannan, S. Carbon nanotubes on paper: Flexible and disposable chemiresistors. Sens. Actuators B 2015, 220, 1178–1185. [Google Scholar] [CrossRef]
- Rösch, A.G.; Gall, A.; Aslan, S.; Hecht, M.; Franke, L.; Mallick, M.M.; Penth, L.; Bahro, D.; Friderich, D.; Lemmer, U. Fully printed origami thermoelectric generators for energy-harvesting. Npj Flex. Electron. 2021, 5, 1. [Google Scholar] [CrossRef]
- Fukuie, K.; Iwata, Y.; Iwase, E. Design of substrate stretchability using origami-like folding deformation for flexible thermoelectric generator. Micromachines 2018, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Mortazavinatanzi, S.; Rezaniakolaei, A.; Rosendahl, L. Printing and folding: A solution for high-throughput processing of organic thin-film thermoelectric devices. Sensors 2018, 18, 989. [Google Scholar] [CrossRef]
- Yilmaz, M.; Yusuf, A.; Gurkan, K.; Ballikaya, S. Developing High-performance and low-cost paint thermoelectric materials for low-mid temperature applications. ACS Appl. Mater. Interfaces 2024, 16, 12661–12671. [Google Scholar] [CrossRef]
- Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364. [Google Scholar] [CrossRef]
- Tang, R.; Yang, S.; Li, P.; Zhang, H.; Li, H.; Liu, Z. Enhancing thermoelectric performance of single-walled carbon nanotube films by poly(styrene sulfonate acid) dispersing and sequential base treatment. Compos. Commun. 2024, 47, 101873. [Google Scholar] [CrossRef]
- Foradori, S.M.; Prussack, B.; Berson, A.; Arnold, M.S. Assembly and alignment of high packing density carbon nanotube arrays using lithographically defined microscopic water features. ACS Nano 2024, 18, 8259–8269. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Amma, Y.; Takashiri, M. Heat source free water floating carbon nanotube thermoelectric generators. Sci. Rep. 2011, 11, 14707. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-S.; Lin, J.-M.; Tung, S.-H.; Higashihara, T.; Liu, C.-L. Synergistic interactions in sequential process doping of polymer/single-walled carbon nanotube nanocomposites for enhanced n-type thermoelectric performance. Small 2024, 20, 2306166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Fan, S.; Xiao, N.; Liu, D.; Tay, Y.Y.; Yu, C.; Sim, D.; Hng, H.H.; Zhang, Q.; Boey, F.; et al. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 2012, 5, 5364–5369. [Google Scholar] [CrossRef]
- Seki, Y.; Nagata, K.; Takashiri, M. Facile preparation of air-stable n-type thermoelectric single-wall carbon nanotube films with anionic surfactants. Sci. Rep. 2020, 10, 8104. [Google Scholar] [CrossRef]
- Carison, E.J.; Strunz, K.; Otis, B.P. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circuits 2010, 45, 741–750. [Google Scholar] [CrossRef]
Structure of Generator | Painted TEG on Japanese Paper | Drop-Casted TEG on Polyimide Sheet |
---|---|---|
Voc [mV] | 10.7 | 24 |
Pmax [μW] | 0.21 | 0.4 |
Number of pair | 4 | 4 |
SWCNT powder | SG-CNT | SG-CNT |
Surfactant (P-type) | SDBS | No use |
Surfactant (N-type) | DODMAC | DODMAC |
Reference | This work | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, T.; Hoshino, K.; Yamamoto, H.; Kaneko, K.; Okano, Y.; Takashiri, M. Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes. Sensors 2024, 24, 2946. https://doi.org/10.3390/s24092946
Nakajima T, Hoshino K, Yamamoto H, Kaneko K, Okano Y, Takashiri M. Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes. Sensors. 2024; 24(9):2946. https://doi.org/10.3390/s24092946
Chicago/Turabian StyleNakajima, Takumi, Koki Hoshino, Hisatoshi Yamamoto, Keisuke Kaneko, Yutaro Okano, and Masayuki Takashiri. 2024. "Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes" Sensors 24, no. 9: 2946. https://doi.org/10.3390/s24092946
APA StyleNakajima, T., Hoshino, K., Yamamoto, H., Kaneko, K., Okano, Y., & Takashiri, M. (2024). Stretchable and Flexible Painted Thermoelectric Generators on Japanese Paper Using Inks Dispersed with P- and N-Type Single-Walled Carbon Nanotubes. Sensors, 24(9), 2946. https://doi.org/10.3390/s24092946