Analyzing the Impact of Various Jump Load Intensities on Countermovement Jump Metrics: A Comparison of Average, Peak, and Peak-to-Average Ratios in Force-Based Metrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Jump Load and CMJ Data Collection
2.2. Force-Based Metrics
2.3. Statistical Analysis
3. Results
3.1. Descriptives for Jump Loads and CMJ Test
3.2. Correlations for Jump Loads and CMJ Test Correlations
3.3. Regressions for Jumps 50+ and Average and Peak CMJ Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabarkapa, D.; Cabarkapa, D.V.; Aleksic, J.; Philipp, N.M.; Scott, A.A.; Johnson, Q.R.; Fry, A.C. Differences in countermovement vertical jump force-time metrics between starting and non-starting professional male basketball players. Front. Sports Act. Living 2023, 5, 1327379. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Philipp, N.M.; Fry, A.C. Competitive Season-Long Changes in Countermovement Vertical Jump Force-Time Metrics in Female Volleyball Players. J. Strength Cond. Res. 2024, 38, e72–e77. [Google Scholar] [CrossRef] [PubMed]
- Cabarkapa, D.V.; Cabarkapa, D.; Whiting, S.M.; Fry, A.C. Fatigue-induced neuromuscular performance changes in professional male volleyball players. Sports 2023, 11, 120. [Google Scholar] [CrossRef]
- Sanders, G.J.; Boos, B.; Shipley, F.; Scheadler, C.M.; Peacock, C.A. An Accelerometer-Based Training Load Analysis to Assess Volleyball Performance. J. Exerc. Nutr. 2018, 1. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lu, J.; Baker, J.S.; Fekete, G.; Gu, Y. Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 236, 200–208. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Comput. Methods Programs Biomed. 2023, 241, 107761. [Google Scholar] [CrossRef]
- Sanders, G.J.; Skodinski, S.; Cabarkapa, D.V.; Howard, M.; Cabarkapa, D.; Kollock, R.O.; Peacock, C.A. Countermovement Jumps and Acute to Chronic Workload Ratios in Low, Moderate, and High Jump Load Groups Throughout a Division I Volleyball Season. J. Strength Cond. Res. 2024; Accepted. [Google Scholar]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef]
- Gathercole, R.; Sporer, B.; Stellingwerff, T. Countermovement Jump Performance with Increased Training Loads in Elite Female Rugby Athletes. Int. J. Sports Med. 2015, 36, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezencio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrao, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2016, 20, 397–402. [Google Scholar] [CrossRef]
- McErlain-Naylor, S.; King, M.; Pain, M.T.G. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J. Sports Sci. 2014, 32, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.-L.; Cronin, J.; Gill, N.D.; Chapman, D.W.; Sheppard, J. Sources of variability in iso-inertial jump assessments. Int. J. Sports Physiol. Perform. 2010, 5, 546–558. [Google Scholar] [CrossRef]
- Taylor, J.B.; Barnes, H.C.; Gombatto, S.P.; Greenwood, D.; Ford, K.R. Quantifying External Load and Injury Occurrence in Women’s Collegiate Volleyball Players Across a Competitive Season. J. Strength Cond. Res. 2022, 36, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.J.; Boos, B.; Rhodes, J.; Kollock, R.O.; Peacock, C.A. Competition-Based Heart Rate, Training Load, and Time Played Above 85% Peak Heart Rate in NCAA Division I Women’s Basketball. J. Strength Cond. Res. 2021, 35, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.J.; Roll, B.; Peacock, C.A. Maximum Distance and High-Speed Distance Demands by Position in NCAA Division I Collegiate Football Games. J. Strength Cond. Res. 2017, 31, 2728–2733. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.J.; Roll, B.; Peacock, C.A.; Kollock, R.O. Maximum Movement Workloads and High-Intensity Workload Demands by Position in NCAA Division I Collegiate Football. J. Strength Cond. Res. 2020, 34, 1974–1981. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R. Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int. J. Sports Physiol. Perform. 2008, 3, 359–374. [Google Scholar] [CrossRef]
- Sanders, G.J.; Boos, B.; Rhodes, J.; Kollock, R.O.; Peacock, C.A.; Scheadler, C.M. Factors associated with minimal changes in countermovement jump performance throughout a competitive division I collegiate basketball season. J. Sports Sci. 2019, 37, 2236–2242. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. S2), S139–S147. [Google Scholar] [CrossRef]
- Borges, T.O.; Moreira, A.; Bacchi, R.; Finotti, R.L.; Ramos, M.; Lopes, C.R.; Aoki, M.S. Validation of the VERT wearable jump monitor device in elite youth volleyball players. Biol. Sport 2017, 34, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Charlton, P.C.; Kenneally-Dabrowski, C.; Sheppard, J.; Spratford, W. A simple method for quantifying jump loads in volleyball athletes. J. Sci. Med. Sport 2016, 20, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Skazalski, C.; Whiteley, R.; Hansen, C.; Bahr, R. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players. Scand. J. Med. Sci. Sports 2018, 28, 1578–1585. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The validity of Hawkin Dynamics wireless dual force plates for measuring countermovement jump and drop jump variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef]
- Pinfold, S.C.; Harnett, M.C.; Cochrane, D.J. The acute effect of lower-limb warm-up on muscle performance. Res. Sports Med. 2018, 26, 490–499. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Sanders, G.J.; Skodinski, S.; Cabarkapa, D.V.; Howard, M.; Cabarkapa, D.; Peacock, C.A. Positional Differences in Jump Loads and Force and Velocity Metrics Throughout a 16-Week Division I Volleyball Season. Transl. Sports Med. 2024, 2024, 5933923. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Cormack, S.; Newton, R.U. Long-term power performance of elite Australian rules football players. J. Strength Cond. Res. 2009, 23, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, C. Optimization of sports effect evaluation technology from random forest algorithm and elastic network algorithm. PLoS ONE 2023, 18, e0292557. [Google Scholar] [CrossRef] [PubMed]
- Morciano, G.; Zingoni, A.; Calabrò, G. Optimization and comparison of machine learning algorithms for the prediction of the performance of football players. Neural Comput. Appl. 2024, 36, 19653–19666. [Google Scholar] [CrossRef]
- Gabbett, T.J. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. J. Strength Cond. Res. 2010, 24, 2593–2603. [Google Scholar] [CrossRef]
- Musat, C.L.; Mereuta, C.; Nechita, A.; Tutunaru, D.; Voipan, A.E.; Voipan, D.; Mereuta, E.; Gurau, T.V.; Gurău, G.; Nechita, L.C. Diagnostic Applications of AI in Sports: A Comprehensive Review of Injury Risk Prediction Methods. Diagnostics 2024, 14, 2516. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.J.; Peacock, C.A. Data Analysis in Sports Science: Utilizing SPSS and ChatGPT, 2nd ed.; KDP: Seattle, WA, USA, 2023. [Google Scholar]
- Gupta, P.; Bagchi, A. Data Manipulation with Pandas. In Essentials of Python for Artificial Intelligence and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2024; pp. 197–235. [Google Scholar]
- Vlantes, T.G.; Readdy, T. Using Microsensor Technology to Quantify Match Demands in Collegiate Women’s Volleyball. J. Strength Cond. Res. 2017, 31, 3266–3278. [Google Scholar] [CrossRef]
Average | Peak | Peak-to-Average Ratios | |
---|---|---|---|
Jump Height (cm) | 31.5 ± 5.8 | 32.3 ± 6.4 | 1.025 ± 0.026 |
Flight Time (seconds) | 0.539 ± 0.048 | 0.543 ± 0.049 | 1.007 ± 0.015 |
Braking RFD (N/s) | 5216.7 ± 2202.1 | 5350.7 ± 2332.2 | 1.026 ± 0.097 |
Countermovement Depth (cm) | −38.8 ± 5.4 | −38.8 ± 5.6 | 0.999 ± 0.040 |
Force at Min Displacement (N) | 1690.7 ± 275.8 | 1704.4 ± 282.0 | 1.008 ± 0.023 |
Average Braking Force (N) | 1391.6 ± 237.5 | 1400.9 ± 243.3 | 1.007 ± 0.015 |
Peak Braking Force (N) | 1720.1 ± 296.6 | 1734.5 ± 302.5 | 1.008 ± 0.012 |
Average Propulsive Force (N) | 1321.9 ± 170.8 | 1328.8 ± 172.1 | 1.005 ± 0.021 |
Peak Propulsive Force (N) | 1716.2 ± 251.4 | 1727.3 ± 258.6 | 1.006 ± 0.012 |
Reactive Strength Index (RSI) | 0.63 ± 0.07 | 0.64 ± 0.08 | 1.010 ± 0.060 |
Modified-RSI (mRSI) | 0.37 ± 0.07 | 0.38 ± 0.08 | 1.025 ± 0.067 |
Total Jump Counts | Average Values | Peak Values | Peak-to-Average | |||
---|---|---|---|---|---|---|
Pearson’s r | p-Value | Pearson’s r | p-Value | Pearson’s r | p-Value | |
Jump Height (cm) | −0.153 | 0.007 | −0.142 | 0.012 | 0.031 | 0.586 |
Flight Time (seconds) | −0.178 | 0.002 | −0.179 | 0.002 | −0.003 | 0.956 |
Braking RFD (N/s) | 0.189 | <0.001 | 0.168 | 0.003 | −0.055 | 0.331 |
Countermovement Depth (cm) | 0.128 | 0.023 | 0.130 | 0.022 | −0.023 | 0.688 |
Force at Min Displacement (N) | 0.189 | <0.001 | 0.171 | 0.002 | −0.068 | 0.233 |
Average Braking Force (N) | 0.224 | <0.001 | 0.209 | <0.001 | −0.049 | 0.391 |
Peak Braking Force (N) | 0.199 | <0.001 | 0.177 | 0.002 | −0.052 | 0.361 |
Average Propulsive Force (N) | 0.125 | 0.026 | 0.121 | 0.033 | −0.044 | 0.440 |
Peak Propulsive Force (N) | 0.210 | <0.001 | 0.190 | <0.001 | −0.061 | 0.285 |
Reactive Strength Index (RSI) | −0.009 | 0.876 | 0.005 | 0.924 | 0.037 | 0.510 |
Modified-RSI (mRSI) | −0.084 | 0.140 | −0.062 | 0.276 | 0.051 | 0.369 |
Jumps 38+ | Average Values | Peak Values | Peak-to-Average | |||
Pearson’s r | p-Value | Pearson’s r | p-Value | Pearson’s r | p-Value | |
Jump Height (cm) | 0.204 | <0.001 | 0.201 | <0.001 | 0.014 | 0.801 |
Flight Time (seconds) | 0.251 | <0.001 | 0.245 | <0.001 | −0.022 | 0.703 |
Braking RFD (N/s) | −0.333 | <0.001 | −0.331 | <0.001 | 0.000 | 0.993 |
Countermovement Depth (cm) | −0.266 | <0.001 | −0.259 | <0.001 | 0.010 | 0.860 |
Force at Min Displacement (N) | −0.359 | <0.001 | −0.360 | <0.001 | 0.000 | 0.996 |
Average Braking Force (N) | −0.373 | <0.001 | −0.370 | <0.001 | −0.008 | 0.895 |
Peak Braking Force (N) | −0.362 | <0.001 | −0.369 | <0.001 | −0.044 | 0.439 |
Average Propulsive Force (N) | −0.299 | <0.001 | −0.304 | <0.001 | −0.025 | 0.666 |
Peak Propulsive Force (N) | −0.334 | <0.001 | −0.338 | <0.001 | −0.017 | 0.763 |
Reactive Strength Index (RSI) | 0.021 | 0.706 | −0.002 | 0.972 | −0.048 | 0.401 |
Modified-RSI (mRSI) | 0.098 | 0.083 | 0.084 | 0.137 | −0.030 | 0.595 |
Jumps 50+ | Average Values | Peak Values | Peak-to-Average | |||
Pearson’s r | p-Value | Pearson’s r | p-Value | Pearson’s r | p-Value | |
Jump Height (cm) | 0.497 | <0.001 | 0.487 | <0.001 | 0.021 | 0.716 |
Flight Time (seconds) | 0.499 | <0.001 | 0.484 | <0.001 | −0.061 | 0.281 |
Braking RFD (N/s) | −0.419 | <0.001 | −0.411 | <0.001 | 0.012 | 0.837 |
Countermovement Depth (cm) | −0.384 | <0.001 | −0.350 | <0.001 | −0.051 | 0.364 |
Force at Min Displacement (N) | −0.529 | <0.001 | −0.526 | <0.001 | −0.023 | 0.682 |
Average Braking Force (N) | −0.526 | <0.001 | −0.520 | <0.001 | −0.018 | 0.752 |
Peak Braking Force (N) | −0.529 | <0.001 | −0.528 | <0.001 | −0.010 | 0.857 |
Average Propulsive Force (N) | −0.416 | <0.001 | −0.418 | <0.001 | −0.003 | 0.961 |
Peak Propulsive Force (N) | −0.480 | <0.001 | −0.478 | <0.001 | −0.006 | 0.912 |
Reactive Strength Index (RSI) | 0.219 | <0.001 | 0.171 | 0.002 | −0.037 | 0.520 |
Modified-RSI (mRSI) | 0.382 | <0.001 | 0.351 | <0.001 | −0.008 | 0.887 |
Average Values | Peak Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CMJ Variable | Constant | β | p-Value | R2 | RMSE | Constant | β | p-Value | R2 | RMSE |
Braking RFD (N/s) | 5982.8 | −32.372 | <0.001 | 0.176 | 2002.8 | 6146.4 | −33.620 | <0.001 | 0.169 | 2129.8 |
Countermovement Depth (cm) | −37.1 | −0.073 | <0.001 | 0.147 | 5.0 | 37.2 | −0.069 | <0.001 | 0.123 | 5.2 |
Force at Min Displacement (N) | 1812.0 | −5.125 | <0.001 | 0.280 | 234.4 | 1827.6 | −5.203 | <0.001 | 0.277 | 240.3 |
Average Braking Force (N) | 1495.3 | −4.381 | <0.001 | 0.277 | 202.4 | 1506.0 | −4.438 | <0.001 | 0.270 | 208.1 |
Peak Braking Force (N) | 1850.3 | −5.503 | <0.001 | 0.280 | 252.2 | 1867.3 | −5.609 | <0.001 | 0.279 | 257.2 |
Average Propulsive Force (N) | 1380.8 | −2.491 | <0.001 | 0.173 | 155.6 | 1388.5 | −2.523 | <0.001 | 0.175 | 156.6 |
Peak Propulsive Force (N) | 1816.4 | −4.231 | <0.001 | 0.230 | 220.9 | 1830.1 | −4.343 | <0.001 | 0.228 | 227.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanders, G.J.; Skodinski, S.; Peacock, C.A. Analyzing the Impact of Various Jump Load Intensities on Countermovement Jump Metrics: A Comparison of Average, Peak, and Peak-to-Average Ratios in Force-Based Metrics. Sensors 2025, 25, 151. https://doi.org/10.3390/s25010151
Sanders GJ, Skodinski S, Peacock CA. Analyzing the Impact of Various Jump Load Intensities on Countermovement Jump Metrics: A Comparison of Average, Peak, and Peak-to-Average Ratios in Force-Based Metrics. Sensors. 2025; 25(1):151. https://doi.org/10.3390/s25010151
Chicago/Turabian StyleSanders, Gabriel J., Stacie Skodinski, and Corey A. Peacock. 2025. "Analyzing the Impact of Various Jump Load Intensities on Countermovement Jump Metrics: A Comparison of Average, Peak, and Peak-to-Average Ratios in Force-Based Metrics" Sensors 25, no. 1: 151. https://doi.org/10.3390/s25010151
APA StyleSanders, G. J., Skodinski, S., & Peacock, C. A. (2025). Analyzing the Impact of Various Jump Load Intensities on Countermovement Jump Metrics: A Comparison of Average, Peak, and Peak-to-Average Ratios in Force-Based Metrics. Sensors, 25(1), 151. https://doi.org/10.3390/s25010151