Hierarchical Optimization Segmentation and Parameter Extraction of Street Trees Based on Topology Checking and Boundary Analysis from LiDAR Point Clouds
Abstract
:1. Introduction
2. Related Research
2.1. Individual Tree Segmentation
2.2. Tree Parameter Extraction
- (1)
- Tree Height
- (2)
- Diameter at Breast Height (DBH)
- (3)
- Tree Location
- (4)
- Crown Diameter
3. Material and Method
3.1. Dataset Acquisition
3.2. Overframe of Roadside Tree Segmentation Algorithm
3.3. Tree Pre-Segmentation
3.4. Segmentation Optimization Based on Topology Checking and Boundaries
3.5. Tree Parameter Extraction Algorithm
4. Experiment Analysis
4.1. Evaluating Indicator
4.2. Experimental Result of Dataset 1
4.3. Experimental Result of Dataset 2
5. Comparison Analysis
6. Discussion
6.1. The Effectiveness of the Topology Checking Module
6.2. The Applicability on ALS Data
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buyukdemircioglu, M.; Kocaman, S. Reconstruction and efficient visualization of heterogeneous 3D city models. Remote Sens. 2020, 12, 2128. [Google Scholar] [CrossRef]
- Billen, R.; Cutting-Decelle, A.-F.; Marina, O.; de Almeida, J.-P. 3D City Models and urban information: Current issues and perspectives: European COST Action TU0801. In 3D City Models and Urban Information: Current Issues and Perspectives; EDP Sciences: Les Ulis, France, 2021. [Google Scholar]
- Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart transportation: An overview of technologies and applications. Sensors 2023, 23, 3880. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, Y.; Liu, S.; Zhang, Q.; Zhao, L.; Sun, J. Instance recognition of street trees from urban point clouds using a three-stage neural network. Isprs J. Photogramm. Remote Sens. 2023, 199, 305–334. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, M.; Sun, W.; Benediktsson, J.A.; Lei, T.; Falco, N. Spatial-Contextual Information Utilization Framework for Land Cover Change Detection With Hyperspectral Remote Sensed Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4411911. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Gharineiat, Z.; Lewandowicz, E.; Shan, J. Modeling the Geometry of Tree Trunks Using LiDAR Data. Forests 2024, 15, 368. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Li, Z. Individual tree DBH and height estimation using terrestrial laser scanning (TLS) in a subtropical forest. Sci. Silvae Sin. 2016, 52, 26–37. [Google Scholar]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Li, J.; Wang, C.; Wang, R.; Chapman, M.A. Mobile Laser Scanned Point-Clouds for Road Object Detection and Extraction: A Review. Remote Sens. 2018, 10, 1531. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Gao, X.; Xu, L.; Liu, B.; Liang, X. Robust extraction of multiple-type support positioning devices in the catenary system of railway dataset based on MLS point clouds. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5702314. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Pun, M.-O.; Shi, W. Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning. ISPRS J. Photogramm. Remote Sens. 2023, 197, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Ma, X.; Li, Y.; Yue, H.; Liu, C. Simulation of Street Tree Pruning for the Visibility of Traffic Signs to Drivers Using MLS Point Clouds. Ieee Geosci. Remote Sens. Lett. 2023, 20, 6501605. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Tong, Y.; Liu, X. Street Tree Crown Detection with Mobile Laser Scanning Data Using a Grid Index and Local Features. Pfg-J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 305–317. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Y. Real-time detection of street tree crowns using mobile laser scanning based on pointwise classification. Biosyst. Eng. 2023, 231, 20–35. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J. A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Du, L.; Pang, Y.; Wang, Q.; Huang, C.; Bai, Y.; Chen, D.; Lu, W.; Kong, D. A LiDAR biomass index-based approach for tree-and plot-level biomass mapping over forest farms using 3D point clouds. Remote Sens. Environ. 2023, 290, 113543. [Google Scholar] [CrossRef]
- Xu, T.; Gao, X.; Yang, Y.; Xu, L.; Xu, J.; Wang, Y. Construction of a semantic segmentation network for the overhead catenary system point cloud based on multi-scale feature fusion. Remote Sens. 2022, 14, 2768. [Google Scholar] [CrossRef]
- Dai, W.; Yang, B.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Kong, X.; Yang, X.; Zhai, G.; Zhao, X.; Zeng, X.; Wang, M.; Liu, Y.; Li, W.; Wen, F. Semantic graph based place recognition for 3d point clouds. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 8216–8223. [Google Scholar]
- Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 339–344. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data. Remote Sens. 2013, 5, 584–611. [Google Scholar] [CrossRef]
- Luo, H.; Khoshelham, K.; Chen, C.; He, H. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding. Isprs J. Photogramm. Remote Sens. 2021, 175, 326–339. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Cheng, X.; Kong, Y.; Wang, X.; Li, Y.; Liu, C. Individual Extraction of Street Trees From MLS Point Clouds Based on Tree Nonphotosynthetic Components Clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5173–5188. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, H.; Cheng, Y.; Xie, M.; Nan, D. An Individual Tree Detection and Segmentation Method from TLS and MLS Point Clouds Based on Improved Seed Points. Forests 2024, 15, 1083. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Biging, G.S. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens. 2004, 70, 351–357. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Wu, Y.; Zhao, Y.; Wu, B. Deeply supervised network for airborne LiDAR tree classification incorporating dual attention mechanisms. GIScience Remote Sens. 2024, 61, 2303866. [Google Scholar] [CrossRef]
- Suárez, J.C.; Ontiveros, C.; Smith, S.; Snape, S. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Comput. Geosci. 2005, 31, 253–262. [Google Scholar] [CrossRef]
- Chen, W.; Xiang, H.; Moriya, K. Individual tree position extraction and structural parameter retrieval based on airborne LiDAR data: Performance evaluation and comparison of four algorithms. Remote Sens. 2020, 12, 571. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Chen, F.; Dong, Y.; Wang, Z.; Li, H.; Chen, D. A new quantitative approach to tree attributes estimation based on LiDAR point clouds. Remote Sens. 2020, 12, 1779. [Google Scholar] [CrossRef]
- Mokroš, M.; Výbošťok, J.; Tomaštík, J.; Grznárová, A.; Valent, P.; Slavík, M.; Merganič, J. High precision individual tree diameter and perimeter estimation from close-range photogrammetry. Forests 2018, 9, 696. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 145–155. [Google Scholar] [CrossRef]
- Feng, Z.; Huang, X.; Liu, F. Forest survey equipment and development of information technology. Trans. Chin. Soc. Agric. Mach. 2015, 46, 257–265. [Google Scholar]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. A hybrid method for segmenting individual trees from airborne lidar data. Comput. Electron. Agric. 2019, 163, 104871. [Google Scholar] [CrossRef]
- Ma, Z.; Pang, Y.; Wang, D.; Liang, X.; Chen, B.; Lu, H.; Weinacker, H.; Koch, B. Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features. Remote Sens. 2020, 12, 1078. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Jing, L.; Hu, B.; Li, J.; Noland, T. Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation. Photogramm. Eng. Remote Sens. 2012, 78, 1275–1284. [Google Scholar] [CrossRef]
- Zhao, D.; Pang, Y.; Li, Z.; Liu, L. Isolating individual trees in a closed coniferous forest using small footprint lidar data. Int. J. Remote Sens. 2014, 35, 7199–7218. [Google Scholar] [CrossRef]
- Ayrey, E.; Fraver, S.; Kershaw, J.A., Jr.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 2017, 43, 16–27. [Google Scholar] [CrossRef]
- Ferraz, A.; Bretar, F.; Jacquemoud, S.; Gonçalves, G.; Pereira, L.; Tomé, M.; Soares, P. 3-D mapping of a multi-layered Mediterranean forest using ALS data. Remote Sens. Environ. 2012, 121, 210–223. [Google Scholar] [CrossRef]
- Hui, Z.; Li, N.; Xia, Y.; Cheng, P.; He, Y. Individual tree extraction from UAV lidar point clouds based on self-adaptive Mean shift segmentation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 1, 25–30. [Google Scholar] [CrossRef]
- Huo, L.-N.; Zhang, X.-L. Individual tree information extraction and accuracy evaluation based on airborne LiDAR point cloud by multilayer clustering method. Sci. Silvae Sin. 2021, 57, 85–94. [Google Scholar]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef]
- Penner, M.; Pitt, D.; Woods, M. Parametric vs. nonparametric LiDAR models for operational forest inventory in boreal Ontario. Can. J. Remote Sens. 2013, 39, 426–443. [Google Scholar]
- Li, Z.; Liu, Q.; Pang, Y. Review on forest parameters inversion using LiDAR. J. Remote Sens. 2016, 20, 1138–1150. [Google Scholar]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [Google Scholar] [CrossRef]
- Liu, Q. Study on the Estimation Method of Forest Parameters Using Airborne Lidar; Chinese Academy of Forestry: Beijing, China, 2009. [Google Scholar]
- Roberts, S.D.; Dean, T.J.; Evans, D.L.; McCombs, J.W.; Harrington, R.L.; Glass, P.A. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. For. Ecol. Manag. 2005, 213, 54–70. [Google Scholar] [CrossRef]
- Holmgren, J.; Nilsson, M.; Olsson, H. Estimation of tree height and stem volume on plots using airborne laser scanning. For. Sci. 2003, 49, 419–428. [Google Scholar] [CrossRef]
- Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 2003, 85, 290–303. [Google Scholar] [CrossRef]
- Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens. Environ. 2004, 91, 68–89. [Google Scholar] [CrossRef]
- Aschoff, T.; Thies, M.; Spiecker, H. Describing forest stands using terrestrial laser-scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 237–241. [Google Scholar]
- Dralle, K.; Rudemo, M. Stem number estimation by kernel smoothing of aerial photos. Can. J. For. Res. 1996, 26, 1228–1236. [Google Scholar] [CrossRef]
- Larsen, M.; Rudemo, M. Optimizing templates for finding trees in aerial photographs. Pattern Recognit. Lett. 1998, 19, 1153–1162. [Google Scholar] [CrossRef]
- Pouliot, D.; King, D.; Bell, F.; Pitt, D. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Gaetano, R.; Masi, G.; Poggi, G.; Verdoliva, L.; Scarpa, G. Marker-controlled watershed-based segmentation of multiresolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2987–3004. [Google Scholar] [CrossRef]
- Gougeon, F.A.; Leckie, D.G. Forest Information Extraction from High Spatial Resolution Images Using an Individual Tree Crown Approach; Pacific Forestry Centre, Canadian Forest Service: Victoria, BC, Canada, 2003. [Google Scholar]
- Brandtberg, T.; Walter, F. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Mach. Vis. Appl. 1998, 11, 64–73. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
Predict | P (%) | R (%) | F1 (%) | |
---|---|---|---|---|
Type | ||||
I-1 | 100.00 | 97.15 | 98.55 | |
I-2 | 100.00 | 97.38 | 98.67 | |
I-3 | 100.00 | 95.12 | 97.50 | |
I-4 | 98.77 | 99.59 | 99.18 | |
I-5 | 98.67 | 99.87 | 99.27 | |
I-6 | 99.33 | 98.76 | 99.04 | |
I-7 | 99.64 | 98.74 | 99.19 | |
I-8 | 99.85 | 99.11 | 99.48 | |
I-9 | 100.00 | 97.57 | 98.77 | |
I-10 | 100.00 | 99.46 | 99.73 | |
I-11 | 99.98 | 98.22 | 99.09 | |
I-12 | 99.76 | 98.92 | 99.34 | |
II-1 | 99.87 | 98.39 | 99.12 | |
II-2 | 99.98 | 99.52 | 99.75 | |
II-3 | 100.00 | 99.69 | 99.84 | |
II-4 | 99.82 | 98.99 | 99.40 | |
II-5 | 89.41 | 99.49 | 94.18 | |
II-6 | 99.73 | 99.97 | 99.85 | |
II-7 | 99.79 | 99.72 | 99.75 | |
II-8 | 98.95 | 99.55 | 99.25 | |
II-9 | 100.00 | 99.80 | 99.90 | |
II-10 | 100.00 | 100.00 | 100.00 | |
II-11 | 99.34 | 99.96 | 99.65 | |
II-12 | 100.00 | 99.30 | 99.65 | |
II-13 | 100.00 | 97.83 | 98.90 | |
II-14 | 97.77 | 99.97 | 98.86 | |
Average | 99.26 | 98.93 | 99.07 |
Index | Tree Height (m) /AIoU | DBH (m) /AIoU | Tree Radius (m) /AIoU | Crown Area (m2) /AIoU |
---|---|---|---|---|
I-1 | 12.77/100% | 0.25/100% | 0.13/100% | 20.52/100% |
I-2 | 7.71/100% | 0.21/100% | 0.11/100% | 14.27/100% |
I-3 | 12.14/100% | 0.26/100% | 0.13/100% | 31.89/93.43% |
I-4 | 10.33/100% | 0.21/100% | 0.11/100% | 24.93/94.12% |
I-5 | 11.85/100% | 0.24/100% | 0.12/100% | 35.92/98.58% |
I-6 | 7.88/100% | 0.16/100% | 0.08/100% | 18.23/97.63% |
I-7 | 9.08/100% | 0.17/100% | 0.09/100% | 25.41/100% |
I-8 | 11.92/100% | 0.25/100% | 0.12/100% | 37.26/95.54% |
I-9 | 9.44/100% | 0.15/100% | 0.08/100% | 15.84/100% |
I-10 | 11.24/100% | 0.15/100% | 0.08/100% | 14.88/99.25% |
I-11 | 11.40/100% | 0.23/100% | 0.11/100% | 30.94/97.37% |
I-12 | 9.27/100% | 0.17/100% | 0.09/100% | 22.25/95.36% |
II-1 | 8.98/100% | 0.17/100% | 0.08/100% | 22.50/100% |
II-2 | 8.36/100% | 2.21/100% | 1.10/100% | 23.88/100% |
II-3 | 6.18/100% | 0.14/100% | 0.07/100% | 9.63/100% |
II-4 | 12.35/100% | 0.26/100% | 0.13/100% | 35.55/100% |
II-5 | 8.01/100% | 0.14/100% | 0.07/100% | 13.55/94.54% |
II-6 | 9.24/100% | 0.12/100% | 0.06/100% | 21.47/100% |
II-7 | 14.51/100% | 0.22/100% | 0.11/100% | 38.29/100% |
II-8 | 11.27/100% | 0.93/100% | 0.47/100% | 18.90/100% |
II-9 | 9.27/100% | 1.66/100% | 0.83/100% | 15.91/100% |
II-10 | 6.52/100% | 1.41/100% | 0.71/100% | 10.32/100% |
II-11 | 9.07/100% | 0.16/100% | 0.08/100% | 12.88/100% |
II-12 | 7.68/100% | 0.14/100% | 0.07/100% | 13.00/100% |
II-13 | 7.45/100% | 0.21/100% | 0.10/100% | 16.61/100% |
II-14 | 12.69/100% | 0.22/100% | 0.11/100% | 49.00/100% |
Prediction | P (%) | R (%) | F1 (%) | |
---|---|---|---|---|
Type | ||||
I-1 | 99.99 | 99.96 | 99.98 | |
I-2 | 99.99 | 99.99 | 99.99 | |
I-3 | 99.99 | 98.07 | 99.02 | |
I-4 | 99.99 | 98.82 | 99.40 | |
I-5 | 100.00 | 99.83 | 99.91 | |
I-6 | 99.95 | 99.99 | 99.97 | |
I-7 | 99.80 | 99.92 | 99.86 | |
I-8 | 99.99 | 99.99 | 99.99 | |
I-9 | 99.99 | 100.00 | 99.99 | |
I-10 | 99.65 | 99.99 | 99.82 | |
I-11 | 98.74 | 98.64 | 98.69 | |
I-12 | 98.87 | 99.98 | 99.42 | |
II-1 | 99.99 | 99.93 | 99.96 | |
II-2 | 100.00 | 98.64 | 99.31 | |
II-3 | 98.83 | 99.99 | 99.41 | |
II-4 | 99.41 | 99.31 | 99.36 | |
II-5 | 96.71 | 98.20 | 97.45 | |
II-6 | 100.00 | 96.16 | 98.04 | |
II-7 | 99.99 | 100.00 | 99.99 | |
II-8 | 99.99 | 99.99 | 99.99 | |
II-9 | 99.99 | 99.95 | 99.97 | |
II-10 | 99.99 | 100.00 | 99.99 | |
II-11 | 99.99 | 100.00 | 99.99 | |
II-12 | 100.00 | 100.00 | 100.00 | |
II-13 | 99.91 | 99.71 | 99.81 | |
II-14 | 99.99 | 99.93 | 99.96 | |
Average | 99.99 | 99.21 | 99.66 |
Index | Tree Height (m) /AIoU | DBH (m) /AIoU | Tree Radius (m) /AIoU | Crown Area (m2) /AIoU |
---|---|---|---|---|
I-1 | 6.25/100% | 0.20/100% | 0.10/100% | 22.45/100% |
I-2 | 7.36/100% | 0.26/100% | 0.13/100% | 20.78/100% |
I-3 | 7.16/100% | 0.26/100% | 0.13/100% | 24.80/100% |
I-4 | 7.80/100% | 0.32/100% | 0.16/100% | 33.53/100% |
I-5 | 7.45/100% | 0.26/100% | 0.13/100% | 19.35/100% |
I-6 | 9.07/100% | 0.3/100% | 0.15/100% | 33.42/100% |
I-7 | 6.97/100% | 0.08/100% | 0.04/100% | 23.00/100% |
I-8 | 6.84/100% | 0.08/100% | 0.04/100% | 21.67/100% |
I-9 | 7.88/100% | 0.06/100% | 0.03/100% | 16.98/91% |
I-10 | 6.63/100% | 0.08/100% | 0.04/100% | 26.49/90% |
II-1 | 8.16/100% | 0.06/100% | 0.03/100% | 29.76/100% |
II-2 | 7.98/100% | 0.08/100% | 0.04/100% | 37.99/100% |
II-3 | 6.68/100% | 0.08/100% | 0.04/100% | 27.90/98% |
II-4 | 6.35/100% | 0.06/100% | 0.03/100% | 17.09/98% |
II-5 | 7.75/100% | 0.06/100% | 0.03/100% | 28.42/100% |
II-6 | 7.14/100% | 0.08/100% | 0.04/100% | 32.76/100% |
II-7 | 7.28/100% | 0.28/100% | 0.14/100% | 36.75/100% |
II-8 | 7.65/100% | 0.10/100% | 0.05/100% | 26.29/100% |
II-9 | 5.44/100% | 0.06/100% | 0.03/100% | 13.95/100% |
II-10 | 7.78/100% | 0.10/100% | 0.05/100% | 44.10/100% |
II-11 | 5.95/100% | 0.06/100% | 0.03/100% | 13.41/100% |
II-12 | 5.86/100% | 0.06/100% | 0.03/100% | 16.67/100% |
II-13 | 8.13/100% | 0.10/100% | 0.05/100% | 35.46/100% |
II-14 | 5.86/100% | 0.08/100% | 0.04/100% | 20.25/96% |
II-15 | 6.03/100% | 0.06/100% | 0.03/100% | 21.80/95% |
II-16 | 6.95/100% | 0.06/100% | 0.03/100% | 32.55/100% |
Predict | P (%) | R (%) | F1 (%) | ||||
---|---|---|---|---|---|---|---|
Type | Ours | Comparison Algorithm | Ours | Comparison Algorithm | Ours | Comparison Algorithm | |
I-1 | 100.00 | 99.77 | 97.15 | 96.96 | 98.55 | 98.35 | |
I-2 | 100.00 | 99.02 | 97.38 | 57.59 | 98.67 | 72.83 | |
I-3 | 100.00 | 99.79 | 95.12 | 91.88 | 97.50 | 95.67 | |
I-4 | 98.77 | 99.73 | 99.59 | 98.30 | 99.18 | 99.01 | |
I-5 | 98.67 | 100.00 | 99.87 | 98.51 | 99.27 | 99.25 | |
I-6 | 99.33 | 99.50 | 98.76 | 95.91 | 99.04 | 97.67 | |
I-7 | 99.64 | 100.00 | 98.74 | 87.81 | 99.19 | 93.51 | |
I-8 | 99.85 | 100.00 | 99.11 | 98.25 | 99.48 | 99.12 | |
I-9 | 100.00 | 100.00 | 97.57 | 96.14 | 98.77 | 98.03 | |
I-10 | 100.00 | 99.97 | 99.46 | 99.49 | 99.73 | 99.73 | |
I-11 | 99.98 | 100.00 | 98.22 | 96.01 | 99.09 | 97.96 | |
I-12 | 99.76 | 100.00 | 98.92 | 95.15 | 99.34 | 97.51 | |
II-1 | 99.87 | 99.98 | 98.39 | 96.96 | 99.12 | 98.45 | |
II-2 | 99.98 | 99.39 | 99.52 | 95.44 | 99.75 | 97.37 | |
II-3 | 100.00 | 98.73 | 99.69 | 92.86 | 99.84 | 95.71 | |
II-4 | 99.82 | 97.06 | 98.99 | 93.14 | 99.40 | 95.06 | |
II-5 | 89.41 | 97.08 | 99.49 | 90.97 | 94.18 | 93.93 | |
II-6 | 99.73 | 99.34 | 99.97 | 84.05 | 99.85 | 91.06 | |
II-7 | 99.79 | 99.82 | 99.72 | 96.71 | 99.75 | 98.24 | |
II-8 | 98.95 | 99.19 | 99.55 | 95.63 | 99.25 | 97.38 | |
II-9 | 100.00 | 99.75 | 99.80 | 94.33 | 99.90 | 96.96 | |
II-10 | 100.00 | 99.73 | 100.00 | 92.87 | 100.00 | 96.18 | |
II-11 | 99.34 | 99.8 | 99.96 | 90.95 | 99.65 | 95.17 | |
II-12 | 100.00 | 99.65 | 99.30 | 92.61 | 99.65 | 96.00 | |
II-13 | 100.00 | 99.41 | 97.83 | 92.69 | 98.90 | 95.93 | |
II-14 | 97.77 | 98.60 | 99.97 | 95.83 | 98.86 | 97.20 | |
Avgerage | 99.26 | 99.44 | 98.93 | 92.96 | 99.07 | 95.90 |
Predict | P (%) | R (%) | F1 (%) | |
---|---|---|---|---|
Type | ||||
I-1 | 100.00 | 98.15 | 99.07 | |
I-2 | 100.00 | 97.12 | 98.54 | |
I-3 | 100.00 | 98.42 | 99.20 | |
I-4 | 99.87 | 98.46 | 99.16 | |
I-5 | 99.78 | 99.87 | 99.82 | |
I-6 | 100.00 | 99.76 | 99.88 | |
II-1 | 100.00 | 99.59 | 99.79 | |
II-2 | 100.00 | 99.60 | 99.80 | |
II-3 | 100.00 | 99.88 | 99.94 | |
II-4 | 100.00 | 98.33 | 99.47 | |
II-5 | 100.00 | 99.49 | 98.16 | |
II-6 | 99.84 | 98.54 | 96.85 | |
II-7 | 99.79 | 98.65 | 99.19 | |
II-8 | 100.00 | 99.56 | 99.78 | |
II-9 | 100.00 | 99.90 | 99.95 | |
II-10 | 99.80 | 99.75 | 99.77 | |
II-11 | 99.69 | 99.89 | 99.85 | |
II-12 | 99.88 | 99.56 | 99.79 | |
II-13 | 100.00 | 99.63 | 99.81 | |
II-14 | 100.00 | 98.69 | 99.34 | |
II-15 | 100.00 | 99.59 | 99.79 | |
Average | 99.94 | 99.16 | 99.38 |
Index | Tree Height (m) | DBH (m) | Tree Radius (m) | Crown Area (m2) |
---|---|---|---|---|
I-1 | 5.74 | 0.21 | 0.11 | 7.98 |
I-2 | 7.05 | 0.21 | 0.10 | 23.91 |
I-3 | 6.51 | 0.25 | 0.12 | 14.50 |
I-4 | 6.42 | 0.16 | 0.08 | 18.58 |
I-5 | 6.94 | 0.23 | 0.12 | 19.98 |
I-6 | 5.96 | 0.22 | 0.11 | 10.58 |
II-1 | 5.69 | 0.21 | 0.11 | 16.56 |
II-2 | 5.87 | 0.12 | 0.06 | 21.06 |
II-3 | 6.26 | 0.29 | 0.15 | 22.69 |
II-4 | 5.60 | 0.17 | 0.08 | 17.02 |
II-5 | 6.19 | 0.19 | 0.10 | 23.84 |
II-6 | 5.97 | 0.11 | 0.06 | 23.41 |
II-7 | 5.80 | 0.34 | 0.17 | 25.03 |
II-8 | 5.15 | 0.18 | 0.09 | 17.16 |
II-9 | 5.15 | 0.16 | 0.08 | 9.70 |
II-10 | 6.32 | 0.64 | 0.32 | 24.94 |
II-11 | 6.09 | 0.27 | 0.14 | 24.48 |
II-12 | 6.55 | 0.20 | 0.10 | 27.11 |
II-13 | 5.66 | 0.30 | 0.15 | 22.72 |
II-14 | 6.58 | 0.34 | 0.17 | 23.33 |
II-15 | 6.38 | 0.57 | 0.28 | 15.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, Y.; Gao, X.; Zhang, Y.; Liu, T.; An, G.; Ye, F.; Tian, Y.; Chen, Y. Hierarchical Optimization Segmentation and Parameter Extraction of Street Trees Based on Topology Checking and Boundary Analysis from LiDAR Point Clouds. Sensors 2025, 25, 188. https://doi.org/10.3390/s25010188
Kou Y, Gao X, Zhang Y, Liu T, An G, Ye F, Tian Y, Chen Y. Hierarchical Optimization Segmentation and Parameter Extraction of Street Trees Based on Topology Checking and Boundary Analysis from LiDAR Point Clouds. Sensors. 2025; 25(1):188. https://doi.org/10.3390/s25010188
Chicago/Turabian StyleKou, Yuan, Xianjun Gao, Yue Zhang, Tianqing Liu, Guanxing An, Fen Ye, Yongyu Tian, and Yuhan Chen. 2025. "Hierarchical Optimization Segmentation and Parameter Extraction of Street Trees Based on Topology Checking and Boundary Analysis from LiDAR Point Clouds" Sensors 25, no. 1: 188. https://doi.org/10.3390/s25010188
APA StyleKou, Y., Gao, X., Zhang, Y., Liu, T., An, G., Ye, F., Tian, Y., & Chen, Y. (2025). Hierarchical Optimization Segmentation and Parameter Extraction of Street Trees Based on Topology Checking and Boundary Analysis from LiDAR Point Clouds. Sensors, 25(1), 188. https://doi.org/10.3390/s25010188