A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions
Abstract
:1. Introduction
2. Background and Preliminary
2.1. Problem Definition
2.2. Anomaly Types in MTS
2.2.1. Point-Wise Anomalies
2.2.2. Pattern-Wise Anomalies
2.2.3. Inter-Metric Anomalies
2.3. Time/Frequency Domain Analysis
3. Taxonomy of MTSAD Methods
3.1. Temporal/Spatial
3.2. Related Learning Paradigms
3.3. Model Input
4. Forecasting Methods
4.1. CNN-Based Models
4.2. RNN-Based Models
4.3. GNN-Based Models
4.4. Transformer-Based Models
4.5. Pros and Cons
5. Reconstruction Methods
5.1. AE-Based Models
5.2. VAE-Based Models
5.3. GAN-Based Models
5.4. Transformer-Based Models
5.5. Diffusion-Based Models
5.6. Pros and Cons
6. Contrastive Methods
6.1. LLMs-Based Models
6.2. MLP Mixer-Based Models
6.3. Transformer-Based Models
6.4. Pros and Cons
7. Datasets
7.1. Astronomy
7.2. Aerospace
7.3. Environmental Science
7.4. Internet of Things (IoT)
7.5. Business and Finance
7.6. Cybersecurity
7.7. Industrial Control Systems
7.8. Healthcare
7.9. Server Monitoring
7.10. Infrastructure
8. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belay, M.A.; Blakseth, S.S.; Rasheed, A.; Salvo Rossi, P. Unsupervised Anomaly Detection for IoT–Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions. Sensors 2023, 23, 2844. [Google Scholar] [CrossRef]
- Correia, L.; Goos, J.C.; Klein, P.; Bäck, T.; Kononova, A.V. Online model–based anomaly detection in multivariate time series: Taxonomy, survey, research challenges and future directions. Eng. Appl. Artif. Intell. 2024, 138, 109323. [Google Scholar] [CrossRef]
- Hilal, W.; Gadsden, S.A.; Yawney, J. Financial fraud: A review of anomaly detection techniques and recent advances. Expert Syst. Appl. 2022, 193, 116429. [Google Scholar] [CrossRef]
- Cook, A.A.; Misirli, G.; Fan, Z. Anomaly Detection for IoT Time–Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–6494. [Google Scholar] [CrossRef]
- Angiulli, F.; Pizzuti, C. Fast outlier detection in high dimensional spaces. In Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, Berlin/Heidelberg, Germany, 19–23 August 2002; pp. 15–27. [Google Scholar]
- Schölkopf, B.; Platt, J.C.; Shawe–Taylor, J. Estimating the support of a high–dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density–based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104. [Google Scholar]
- Nelson, B.K. Time series analysis using autoregressive integrated moving average (ARIMA) models. Acad. Emerg. Med. 1998, 5, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Perkins, S. Time–series novelty detection using one–class support vector machines. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 1741–1745. [Google Scholar]
- Tax, D.M.J.; Duin, R.P.W. Support vector data description. Mach. Learn. 2004, 54, 45–66. [Google Scholar] [CrossRef]
- Munir, M.; Chattha, M.A.; Dengel, A.; Ahmed, S. A comparative analysis of traditional and deep learning–based anomaly detection methods for streaming data. In Proceedings of the 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 561–566. [Google Scholar]
- Vaswani, A. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Yang, Y.; Zhang, C.; Zhou, T.; Wen, Q.; Sun, L. Dcdetector: Dual attention contrastive representation learning for time series anomaly detection. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 3033–3045. [Google Scholar]
- Hao, X.; Chen, Y.; Yang, C.; Du, Z.; Ma, C.; Wu, C.; Meng, X. From Chaos to Clarity: Time Series Anomaly Detection in Astronomical Observations. arXiv 2024, arXiv:2403.10220. [Google Scholar]
- Huang, X.; Chen, N.; Deng, Z.; Huang, S. Multivariate time series anomaly detection via dynamic graph attention network and Informer. Appl. Intell. 2024, 54, 7636–7658. [Google Scholar] [CrossRef]
- Chen, F.; Qin, Z.; Zhou, M.; Zhang, Y.; Deng, S.; Fan, L.; Wen, Q. LARA: A Light and Anti–overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection. In Proceedings of the ACM on Web Conference 2024, Singapore, 13–17 May 2024; pp. 4138–4149. [Google Scholar]
- Prabhu, H.; Valadi, J.; Arjunan, P. Generative Adversarial Network with Soft–Dynamic Time Warping and Parallel Reconstruction for Energy Time Series Anomaly Detection. arXiv 2024, arXiv:2402.14384. [Google Scholar]
- Wang, C.; Zhuang, Z.; Qi, Q.; Wang, J.; Wang, X.; Sun, H.; Liao, J. Drift doesn’t matter: Dynamic decomposition with diffusion reconstruction for unstable multivariate time series anomaly detection. In Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 10758–10774. [Google Scholar]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Ma, S.; Guan, S.; He, Z.; Nie, J.; Gao, M. TPAD: Temporal pattern based neural network model for anomaly detection in multivariate time series. IEEE Sens. J. 2023, 23, 30668–30682. [Google Scholar] [CrossRef]
- Zamanzadeh Darban, Z.; Webb, G.I.; Pan, S.; Aggarwal, C.; Salehi, M. Deep learning for time series anomaly detection: A survey. ACM Comput. Surv. 2024, 57, 1–42. [Google Scholar] [CrossRef]
- Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access 2018, 7, 1991–2005. [Google Scholar] [CrossRef]
- He, Y.; Zhao, J. Temporal convolutional networks for anomaly detection in time series. J. Phys. Conf. Ser. 2019, 1213, 042050. [Google Scholar] [CrossRef]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d–variation modeling for general time series analysis. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’18, London, UK, 19–23 August 2018; pp. 387–395. [Google Scholar]
- Ding, N.; Ma, H.; Gao, H.; Ma, Y.; Tan, G. Real–time anomaly detection based on long short–Term memory and Gaussian Mixture Model. Comput. Electr. Eng. 2019, 79, 106458. [Google Scholar] [CrossRef]
- Shen, L.; Li, Z.; Kwok, J. Timeseries anomaly detection using temporal hierarchical one–class network. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Volume 33, pp. 13016–13026. [Google Scholar]
- Wu, W.; He, L.; Lin, W.; Su, Y.; Cui, Y.; Maple, C.; Jarvis, S. Developing an unsupervised real–time anomaly detection scheme for time series with multi–seasonality. IEEE Trans. Knowl. Data Eng. 2020, 34, 4147–4160. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate time–series anomaly detection via graph attention network. In Proceedings of the IEEE International Conference on Data Mining, ICDM, Sorrento, Italy, 17–20 November 2020; pp. 841–850. [Google Scholar]
- Deng, A.; Hooi, B. Graph Neural Network–Based Anomaly Detection in Multivariate Time Series. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4027–4035. [Google Scholar] [CrossRef]
- Chen, W.; Tian, L.; Chen, B.; Dai, L.; Duan, Z.; Zhou, M. Deep variational graph convolutional recurrent network for multivariate time series anomaly detection. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 3621–3633. [Google Scholar]
- Han, S.; Woo, S.S. Learning sparse latent graph representations for anomaly detection in multivariate time series. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 2977–2986. [Google Scholar]
- Chen, K.; Feng, M.; Wirjanto, T.S. Multivariate time series anomaly detection via dynamic graph forecasting. arXiv 2023, arXiv:2302.02051. [Google Scholar]
- Fu, Y.; Xue, F. Mad: Self–supervised masked anomaly detection task for multivariate time series. In Proceedings of the International Joint Conference on Neural Networks, IJCNN, Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Wu, Y.; Dong, Y.; Zhu, W.; Zhang, J.; Liu, S.; Lu, D.; Li, Y. CLformer: Constraint–based Locality enhanced Transformer for anomaly detection of ancient building structures. Eng. Appl. Artif. Intell. 2023, 126, 107072. [Google Scholar] [CrossRef]
- Jeong, Y.; Yang, E.; Ryu, J.H.; Park, I.; Kang, M. Anomalybert: Self–supervised transformer for time series anomaly detection using data degradation scheme. arXiv 2023, arXiv:2305.04468. [Google Scholar]
- Zong, B.; Song, Q.; Renqiang Min, M.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Zhang, C.; Song, D.; Chen, Y.; Feng, X.; Lumezanu, C.; Cheng, W.; Chawla, N.V. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1409–1416. [Google Scholar]
- Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 23–27 August 2020; pp. 3395–3404. [Google Scholar]
- Lai, C.Y.A.; Sun, F.K.; Gao, Z.; Lang, J.H.; Boning, D. Nominality score conditioned time series anomaly detection by point/sequential reconstruction. In Proceedings of the 37th Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 76637–76655. [Google Scholar]
- Park, D.; Hoshi, Y.; Kemp, C.C. A multimodal anomaly detector for robot–assisted feeding using an lstm–based variational autoencoder. IEEE Robot. Autom. Lett. 2018, 3, 1544–1551. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, Y.; Niu, C.; Liu, R.; Sun, W.; Pei, D. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2828–2837. [Google Scholar]
- Li, Z.; Zhao, Y.; Han, J.; Su, Y.; Jiao, R.; Wen, X.; Pei, D. Multivariate time series anomaly detection and interpretation using hierarchical inter–metric and temporal embedding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, 14–18 August 2021; pp. 3220–3230. [Google Scholar]
- Huang, T.; Chen, P.; Li, R. A semi–supervised vae based active anomaly detection framework in multivariate time series for online systems. In Proceedings of the ACM Web Conference, WWW’22, Virtual Event, Lyon, France, 25–29 April 2022; pp. 1797–1806. [Google Scholar]
- Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD–GAN: Multivariate anomaly detection for time series data with generative adversarial networks. Int. Conf. Artif. Neural Netw. 2019, 11730, 703–716. [Google Scholar]
- Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta–Infante, A.; Veeramachaneni, K. Tadgan: Time series anomaly detection using generative adversarial networks. In Proceedings of the IEEE International Conference on Data Mining, Atlanta, GA, USA, 10–13 December 2020; pp. 33–43. [Google Scholar]
- Lu, S.; Dong, Z.; Cai, D.; Fang, F.; Zhao, D. MIM–GAN–based Anomaly Detection for Multivariate Time Series Data. In Proceedings of the IEEE Vehicular Technology Conference (VTC2023–Fall), Hong Kong, China, 10–13 October 2023; pp. 1–7. [Google Scholar]
- Chen, X.; Deng, L.; Zhao, Y.; Zheng, K. Adversarial autoencoder for unsupervised time series anomaly detection and interpretation. In Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, 27 February–3 March 2023; pp. 267–275. [Google Scholar]
- Pintilie, I.; Manolache, A.; Brad, F. Time series anomaly detection using diffusion–based models. In Proceedings of the IEEE International Conference on Data Mining, Shanghai, China, 1–4 December 2023; pp. 570–578. [Google Scholar]
- Zhang, H.; Xia, Y.; Yan, T.; Liu, G. Unsupervised anomaly detection in multivariate time series through transformer–based variational autoencoder. In Proceedings of the 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 281–286. [Google Scholar]
- Xu, J. Anomaly transformer: Time series anomaly detection with association discrepancy. In Proceedings of the International Conference on Learning Representations, Virtual Event, 25–29 April 2022. [Google Scholar]
- Tuli, S.; Casale, G.; Jennings, N.R. Tranad: Deep transformer networks for anomaly detection in multivariate time series data. Proc. VLDB Endow. 2022, 15, 1201–1214. [Google Scholar] [CrossRef]
- Song, J.; Kim, K.; Oh, J.; Cho, S. Memto: Memory–guided transformer for multivariate time series anomaly detection. In Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; Volume 36, pp. 57947–57963. [Google Scholar]
- Nam, Y.; Yoon, S.; Shin, Y.; Bae, M.; Song, H.; Lee, J.G.; Lee, B.S. Breaking the Time–Frequency Granularity Discrepancy in Time–Series Anomaly Detection. In Proceedings of the ACM on Web Conference 2024, WWW’24, Singapore, 13–17 May 2024; pp. 4204–4215. [Google Scholar]
- Wu, X.; Qiu, X.; Li, Z.; Wang, Y.; Hu, J.; Guo, C.; Yang, B. CATCH: Channel–Aware Multivariate Time Series Anomaly Detection via Frequency Patching. arXiv 2024, arXiv:2410.12261. [Google Scholar]
- Liu, S.; Yao, D.; Fang, L.; Li, Z.; Li, W.; Feng, K.; Bi, J. AnomalyLLM: Few–Shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models. arXiv 2024, arXiv:2405.07626. [Google Scholar]
- Bian, Y.; Ju, X.; Li, J.; Xu, Z.; Cheng, D.; Xu, Q. Multi–patch prediction: Adapting llms for time series representation learning. In Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024; Volume 235, pp. 3889–3912. [Google Scholar]
- Liu, C.; He, S.; Zhou, Q.; Li, S.; Meng, W. Large language model guided knowledge distillation for time series anomaly detection. In Proceedings of the Thirty—Third International Joint Conference on Artificial Intelligence (IJCAI–24), Jeju, Republic of Korea, 3–9 August 2024; pp. 2162–2170. [Google Scholar]
- Zhong, Z.; Yu, Z.; Yang, Y.; Wang, W.; Yang, K. PatchAD: Patch–Based MLP–Mixer for Time Series Anomaly Detection. arXiv 2024, arXiv:2401.09793. [Google Scholar]
- Pranavan, T.; Sim, T.; Ambikapathi, A.; Ramasamy, S. Contrastive predictive coding for anomaly detection in multi–variate time series data. arXiv 2022, arXiv:2202.03639. [Google Scholar]
- Najari, N.; Berlemont, S.; Lefebvre, G.; Duffner, S.; Garcia, C. RESIST: Robust transformer for unsupervised time series anomaly detection. In Proceedings of the Advanced Analytics and Learning on Temporal Data: 7th ECML PKDD Workshop, Grenoble, France, 19–23 September 2022; pp. 66–82. [Google Scholar]
- Zhong, Z.; Yu, Z.; Xi, X.; Xu, Y.; Chen, J.; Yang, K. SimAD: A Simple Dissimilarity–Based Approach for Time Series Anomaly Detection. arXiv 2024, arXiv:2405.11238. [Google Scholar]
- Ghorbani, R.; Reinders, M.J.; Tax, D.M. RESTAD: REconstruction and Similarity based Transformer for time series Anomaly Detection. arXiv 2024, arXiv:2405.07509. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short–Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2009, 741, 659–663. [Google Scholar]
- Orhan, A.E.; Pitkow, X. Skip connections eliminate singularities. arXiv 2017, arXiv:1701.09175. [Google Scholar]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. In Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook; Springer: Cham, Switzerland, 2023; pp. 353–374. [Google Scholar]
- Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908. [Google Scholar]
- Goodfellow, I.; Pouget–Abadie, J.; Mirza, M.; Xu, B.; Warde–Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Frogner, C.; Zhang, C.; Mobahi, H.; Araya, M.; Poggio, T.A. Learning with a Wasserstein loss. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp. 2053–2061. [Google Scholar]
- Dwibedi, D.; Aytar, Y.; Tompson, J.; Sermanet, P.; Zisserman, A. Temporal cycle–consistency learning. In Proceedings of the IEEE/CVF Conference on Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1801–1810. [Google Scholar]
- Cuturi, M.; Blondel, M. Soft–dtw: A differentiable loss function for time–series. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 894–903. [Google Scholar]
- MacKay, D.J. Introduction to Gaussian processes. NATO ASI Ser. F Comput. Syst. Sci. 1998, 168, 133–166. [Google Scholar]
- Yoon, J.; Zame, W.R.; van der Schaar, M. Estimating missing data in temporal data streams using multi–directional recurrent neural networks. IEEE Trans. Biomed. Eng. 2018, 66, 1477–1490. [Google Scholar] [CrossRef]
- Dong, M.; Huang, H.; Cao, L. Can LLMs Serve As Time Series Anomaly Detectors? arXiv 2024, arXiv:2408.03475. [Google Scholar]
- Alnegheimish, S.; Nguyen, L.; Berti–Equille, L.; Veeramachaneni, K. Large language models can be zero–shot anomaly detectors for time series? arXiv 2024, arXiv:2405.14755. [Google Scholar]
- Zhong, S.; Song, S.; Zhuo, W.; Li, G.; Liu, Y.; Chan, S.H.G. A multi–scale decomposition mlp–mixer for time series analysis. arXiv 2023, arXiv:2310.11959. [Google Scholar] [CrossRef]
- Gong, Z.; Tang, Y.; Liang, J. Patchmixer: A patch–mixing architecture for long–term time series forecasting. arXiv 2023, arXiv:2310.00655. [Google Scholar]
- Ekambaram, V.; Jati, A.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. Tsmixer: Lightweight mlp–mixer model for multivariate time series forecasting. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 459–469. [Google Scholar]
- Ferrell, B.; Santuro, S. NASA Shuttle Valve Data; Florida Tech: Melbourne, FL, USA, 2005. [Google Scholar]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository. 2007. Available online: https://ergodicity.net/2013/07/ (accessed on 8 November 2024).
- Angryk, R.A.; Martens, P.C.; Aydin, B.; Kempton, D.; Mahajan, S.S.; Basodi, S.; Georgoulis, M.K. Multivariate time series dataset for space weather data analytics. Sci. Data 2020, 7, 227. [Google Scholar] [CrossRef]
- Moritz, S.; Rehbach, F.; Chandrasekaran, S.; Rebolledo, M.; Bartz–Beielstein, T. GECCO Industrial Challenge 2018 Dataset: A water quality dataset for the ‘Internet of Things: Online Anomaly Detection for Drinking Water Quality’Competition. In Proceedings of the Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19 July 2018. [Google Scholar]
- Poorebrahimi, A. CICIDS 2017. J. Adv. Signal Process. 2021, 5, 105–115. [Google Scholar]
- KDD Cup. The Third International Knowledge Discovery and Data Mining Tools Competition Dataset KDD Cup 1999 Data. 1999. Available online: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 24 December 2024).
- Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real–time anomaly detection for streaming data. Neurocomputing 2017, 262, 134–147. [Google Scholar] [CrossRef]
- Dal Pozzolo, A.; Caelen, O.; Johnson, R.A.; Bontempi, G. Calibrating probability with undersampling for unbalanced classification. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 159–166. [Google Scholar]
- von Birgelen, A.; Niggemann, O. Anomaly detection and localization for cyber–physical production systems with self–organizing maps. Improve 2018, 8, 55–71. [Google Scholar]
- Filonov, P.; Lavrentyev, A.; Vorontsov, A. Multivariate industrial time series with cyber–attack simulation: Fault detection using an lstm–based predictive data model. arXiv 2016, arXiv:1612.06676. [Google Scholar]
- Aditya, P.M.; Nils, O.T. SWaT: A water treatment testbed for research and training on ICS security. In Proceedings of the 2016 International Workshop on Cyber–Physical Systems for Smart Water Networks (CySWater), Vienna, Austria, 11 April 2016; pp. 31–36. [Google Scholar]
- Goh, J.; Adepu, S.; Junejo, K.N.; Mathur, A. A dataset to support research in the design of secure water treatment systems. Crit. Inf. Infrastruct. Secur. 2017, 10242, 88–99. [Google Scholar]
- Ahmed, C.M.; Palleti, V.R.; Mathur, A.P. WADI: A water distribution testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International Workshop on Cyber–Physical Systems for Smart Water Networks, Pittsburgh, PA, USA, 21 April 2017; pp. 25–28. [Google Scholar]
- Nedelkoski, S.; Bogatinovski, J.; Mandapati, A.K.; Becker, S.; Cardoso, J.; Kao, O. Multi–source distributed system data for ai–powered analytics. In Proceedings of the Service–Oriented and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Greece, 28–30 September 2020; pp. 161–176. [Google Scholar]
- Moody, G.B.; Mark, R.G. The impact of the MIT–BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; PhysioBank, P. PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef]
- Vanderpump, M.P. The epidemiology of thyroid disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef]
- Greenwald, S.D.; Patil, R.S.; Mark, R.G. Improved detection and classification of arrhythmias in noise–corrupted electrocardiograms using contextual information. In Proceedings of the Computers in Cardiology, Chicago, IL, USA, 23–26 September 1990; pp. 461–464. [Google Scholar]
- Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [Google Scholar] [CrossRef]
- Ihler, A.; Hutchins, J.; Smyth, P. Adaptive event detection with time–varying poisson processes. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 207–216. [Google Scholar]
- Daus, M.W. Taxis. In The Routledge Handbook of Public Transport; Routledge: London, UK, 2021; pp. 252–269. [Google Scholar]
- Jacob, V.; Song, F.; Stiegler, A.; Rad, B.; Diao, Y.; Tatbul, N. Exathlon: A benchmark for explainable anomaly detection over time series. arXiv 2020, arXiv:2010.05073. [Google Scholar] [CrossRef]
- He, Z.; Chen, P.; Li, X.; Wang, Y.; Yu, G.; Chen, C.; Zheng, Z. A spatiotemporal deep learning approach for unsupervised anomaly detection in cloud systems. IEEE Trans. Neural Netw. Learn. Syst. 2020, 34, 1705–1719. [Google Scholar] [CrossRef]
- Abdulaal, A.; Liu, Z.; Lancewicki, T. Practical approach to asynchronous multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, 14–18 August 2021; pp. 2485–2494. [Google Scholar]
- Li, Z.; Chen, W.; Pei, D. Robust and unsupervised KPI anomaly detection based on conditional variational autoencoder. In Proceedings of the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), Orlando, FL, USA, 17–19 November 2018; pp. 1–9. [Google Scholar]
- Muthukrishna, D.; Gupta, R. A Classifier–Based Approach to Multi–Class Anomaly Detection Applied to Astronomical Time–Series. arXiv 2024, arXiv:2408.08888. [Google Scholar]
- Scargle, J.D. Studies in astronomical time series analysis. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Baireddy, S.; Desai, S.R.; Mathieson, J.L.; Foster, R.H.; Chan, M.W.; Comer, M.L.; Delp, E.J. Spacecraft time–series anomaly detection using transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 1951–1960. [Google Scholar]
- El–Shafeiy, E.; Alsabaan, M.; Ibrahem, M.I.; Elwahsh, H. Real–time anomaly detection for water quality sensor monitoring based on multivariate deep learning technique. Sensors 2023, 23, 8613. [Google Scholar] [CrossRef] [PubMed]
- Chevrot, A.; Vernotte, A.; Legeard, B. CAE: Contextual auto–encoder for multivariate time–series anomaly detection in air transportation. Comput. Secur. 2022, 116, 102652. [Google Scholar] [CrossRef]
- Rollo, F.; Bachechi, C.; Po, L. Anomaly detection and repairing for improving air quality monitoring. Sensors 2023, 23, 640. [Google Scholar] [CrossRef]
- Sgueglia, A.; Di Sorbo, A.; Visaggio, C.A.; Canfora, G. A systematic literature review of IoT time series anomaly detection solutions. Future Gener. Comput. Syst. 2022, 134, 170–186. [Google Scholar] [CrossRef]
- Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep anomaly detection for time–series data in industrial IoT: A communication–efficient on–device federated learning approach. IEEE Internet Things J. 2020, 8, 6348–6358. [Google Scholar] [CrossRef]
- Nizam, H.; Zafar, S.; Lv, Z.; Wang, F.; Hu, X. Real–time deep anomaly detection framework for multivariate time–series data in industrial iot. IEEE Sens. J. 2022, 22, 22836–22849. [Google Scholar] [CrossRef]
- Crépey, S.; Lehdili, N.; Madhar, N.; Thomas, M. Anomaly detection in financial time series by principal component analysis and neural networks. Algorithms 2022, 15, 385. [Google Scholar] [CrossRef]
- Nam, Y.; Trirat, P.; Kim, T.; Lee, Y.; Lee, J.G. Context–aware deep time–series decomposition for anomaly detection in businesses. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Turin, Italy, 18–22 September 2023; pp. 330–345. [Google Scholar]
- Zelichenok, I.; Kotenko, I. Kitsune Dataset Analysis via BigData and Deep Learning Techniques. In Proceedings of the 2024 IEEE Ural–Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 13–15 May 2024; pp. 152–155. [Google Scholar]
- Kravchik, M.; Shabtai, A. Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca. IEEE Trans. Dependable Secur. Comput. 2021, 19, 2179–2197. [Google Scholar] [CrossRef]
- Hoang, N.X.; Hoang, N.V.; Du, N.H.; Huong, T.T.; Tran, K.P. Explainable anomaly detection for industrial control system cybersecurity. IFAC–PapersOnLine 2022, 55, 1183–1188. [Google Scholar]
- Sivapalan, G.; Nundy, K.K.; Dev, S.; Cardiff, B.; John, D. ANNet: A lightweight neural network for ECG anomaly detection in IoT edge sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 24–35. [Google Scholar] [CrossRef]
- Alamr, A.; Artoli, A. Unsupervised transformer–based anomaly detection in ECG signals. Algorithms 2023, 16, 152. [Google Scholar] [CrossRef]
- Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.; Zhang, Q. Time–series anomaly detection service at microsoft. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3009–3017. [Google Scholar]
- Netzer, M.; Palenga, Y.; Fleischer, J. Machine tool process monitoring by segmented timeseries anomaly detection using subprocess–specific thresholds. Prod. Eng. 2022, 16, 597–606. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, F.; Wang, Y.; Hu, M.; Bai, X. Anomaly Detection Algorithm for Urban Infrastructure Construction Equipment Based on Multidimensional Time Series. Sustainability 2024, 16, 3335. [Google Scholar] [CrossRef]
- Liu, H.; Li, L. Anomaly detection of high–frequency sensing data in transportation infrastructure monitoring system based on fine–tuned model. IEEE Sens. J. 2023, 23, 8630–8638. [Google Scholar] [CrossRef]
- Wang, Z.; Pei, C.; Ma, M.; Wang, X.; Li, Z.; Pei, D.; Xie, G. Revisiting VAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective. In Proceedings of the ACM on Web Conference 2024, Singapore, 13–17 May 2024; pp. 3096–3105. [Google Scholar]
- Gao, S.; Koker, T.; Queen, O.; Hartvigsen, T.; Tsiligkaridis, T.; Zitnik, M. Units: Building a unified time series model. arXiv 2024, arXiv:2403.00131. [Google Scholar]
Model | Venue | Bonkbone | LP | S/T | T/F | Input | Code | Language |
---|---|---|---|---|---|---|---|---|
Forecasting | ||||||||
DeepAnt [22] | IEEE’2018 | CNN | Un | T | T | W | ✔ | Pytorch |
TCN-ms [23] | IOP’2019 | CNN | Semi | T | T | W | – | – |
TimesNet [24] | ICLR’2023 | CNN | Un | T | F | W | ✔ | Pytorch |
LSTM-NDT [25] | KDD’2018 | RNN | Un | T | T | W | ✔ | Tensorflow |
LGMAD [26] | Elsevier’2019 | RNN | Semi | T | T | P | – | – |
THOC [27] | NeurIPS’2020 | RNN | Self | T | T | W | – | – |
AD-LTI [28] | TKDE’2020 | RNN | Un | T | F | P | – | – |
MTAD-GAT [29] | ICDM’2020 | GNN | Self | ST | T | W | ✔ | Tensorflow |
GDN [30] | AAAI’2021 | GNN | Un | S | T | W | ✔ | Pytorch |
FuSAGNet [31] | KDD’2022 | GNN | Un | ST | T | W | – | – |
DVGCRN [32] | ICML’2022 | GNN | Un | ST | T | W | – | – |
DyGraphAD [33] | ACM’2024 | GNN | Un | ST | T | W | – | – |
MAD [34] | IJCNN’2022 | Transformer | Self | T | T | W | – | – |
CLFormer [35] | EAAI’2023 | Transformer | Un | ST | T | W | – | – |
AnomalyBERT [36] | ICLR’2023 | Transformer | Self | T | T | W | ✔ | Pytorch |
Reconstruction | ||||||||
DAGMM [37] | ICLR’2018 | AE | Un | T | T | P | ✔ | Pytorch |
MSCRED [38] | AAAI’2019 | AE | Semi | T | T | W | ✔ | Tensorflow |
USAD [39] | KDD’2020 | AE,GAN | Un | T | T | W | ✔ | Pytorch |
NPSR [40] | NeurIPS’2024 | AE | Un | T | T | W | ✔ | Pytorch |
LSTM-VAE [41] | IEEE’2018 | VAE,RNN | Semi | T | T | P | ✔ | Tensorflow |
OmniAnomaly [42] | KDD’2019 | VAE,GRU | Semi | T | T | W | ✔ | Tensorflow |
InterFusion [43] | KDD’2021 | VAE | Un | T | T | W | ✔ | Tensorflow |
SLA-VAE [44] | WWW’2022 | VAE | Semi | T | T | W | ✔ | Pytorch |
LARA [16] | WWW’2024 | VAE | Un | T | T | W | ✔ | Pytorch |
MAD-GAN [45] | ICANN’2019 | GAN | Un | ST | T | W | ✔ | Tensorflow |
TadGAN [46] | IEEE’2020 | GAN,LSTM | Un | T | T | W | ✔ | Pytorch |
MIM-GAN [47] | IEEE’2023 | GAN,LSTM | Un | T | T | W | ✔ | Tensorflow |
DAEMON [48] | WSDM’2023 | GAN,AE | Un | T | T | W | ✔ | Pytorch |
DCGAN [17] | AAAI’2024 | GAN,CNN | Un | T | T | W | ✔ | Pytorch |
DiffusionAE [49] | ICDMW’2023 | Diffusion,AE | Un | T | T | W | ✔ | Pytorch |
[18] | NeurIPS’2024 | Diffusion | Un | ST | F | W | ✔ | Pytorch |
TransAnomaly [50] | CCDC’2021 | Transformer,VAE | Un | T | T | W | ✔ | Pytorch |
Anomaly Transformer [51] | ICLR’2022 | Transformer | Un | T | T | W | ✔ | Pytorch |
TranAD [52] | VLDB’2022 | Transformer | Un | T | T | W | ✔ | Pytorch |
MEMTO [53] | NeurIPS’2023 | Transformer | Un | T | T | W | ✔ | Pytorch |
Dual-TF [54] | WWW’2024 | Transformer | Un | T | TF | W | ✔ | Pytorch |
CATCH [55] | arXiv’2024 | Transformer | Un | T | TF | W | ✔ | Pytorch |
Contrastive | ||||||||
AnomalyLLM [56] | arXiv’2024 | LLMs | Un | ST | T | W | ✔ | Pytorch |
aLLM4TS [57] | ICML’2024 | LLMs | Self | T | T | W | ✔ | Pytorch |
AnomalyLLM [58] | IJCAI’2024 | LLMs | Self | T | T | W | – | – |
PatchAD [59] | arXiv’2024 | MLP-Mixer | Un | T | T | W | ✔ | Pytorch |
TRL-CPC [60] | Elsevier’2022 | Transformer | Un | T | T | W | – | – |
RESIST [61] | Springer’2022 | Transformer | Un | T | T | W | – | – |
Dcdetector [13] | KDD’2023 | Transformer | Self | T | T | W | ✔ | Pytorch |
SimAD [62] | arXiv’2024 | Transformer | Un | T | T | W | ✔ | Pytorch |
RESTAD [63] | arXiv’2024 | Transformer | Un | T | T | W | ✔ | Pytorch |
Datasets/Benchmark | R/S | Samples | Entities | Dims | Rate | Domain |
---|---|---|---|---|---|---|
MSL [25] | Real | 132,046 | 27 | 55 | 10.48 | Aerospace |
NASA Shuttle Valve Data [81] | Real | 49,097 | 1 | 9 | 7.0 | Aerospace |
IOnsphere [82] | Real | 351 | 33 | 36.0 | Astronomy | |
SWAN-SF [83] | Real | 355,330 | 5 | 51 | 23.8 | Astronomy |
SMAP [25] | Real | 562,800 | 55 | 25 | 12.83 | Environmental science |
OPPORTUNITY [82] | Real | 36,224 | 24 | 133 | 3.4 | Environmental science |
GECCO [84] | Real | 138,521 | 1 | 9 | 1.25 | Internet of things (IoT) |
CICIDS [85] | Real | 170,231 | 72 | 1.28 | Internet of things (IoT) | |
Kitsune [82] | Real | 3,018,973 | 9 | 115 | 17.0 | Cybersecurity |
Http (KDDCUP99) [86] | Real | 567,479 | 3 | 0.4 | Cybersecurity | |
Smtp (KDDCUP99) [86] | Real | 95,156 | 3 | 0.03 | Cybersecurity | |
NAB-realAdExchange [87] | Real | 9616 | 3 | 2 | Business and finance | |
Creditcard [88] | Real | 284,807 | 1 | 29 | 0.17 | Business and finance |
Genesis [89] | Real | 16,220 | 1 | 18 | 0.3 | Industrial control systems |
GHL [90] | Synth | 200,001 | 48 | 22 | 0.4 | Industrial control systems |
SWaT [91,92] | Real | 946,719 | 1 | 51 | 11.98 | Industrial control systems |
WADI [93] | Real | 957,372 | 1 | 123 | 5.99 | Industrial control systems |
trimSyn [38] | Synth | 17,680 | 1 | 35 | 2.34 | Industrial control systems |
MSDS [94] | Real | 292,860 | 1 | 10 | 5.37 | Industrial control systems |
Arrhythmia [95] | Real | 452 | 1 | 274 | 15.0 | Healthcare |
MBA [96] | Real | 200,000 | 8 | 2 | 0.14 | Healthcare |
Thyroid [97] | Real | 3772 | 6 | 2.5 | Healthcare | |
SVDB [98] | Real | 230,400 | 78 | 2 | 13.6 | Healthcare |
Daphnet [82,99] | Real | 32,594 | 35 | 3 | 13.2 | Healthcare |
Callt2 [82,100] | Real | 10,080 | 2 | 2 | 4.1 | Infrastructure |
Metro [82] | Real | 48,204 | 1 | 5 | 0.1 | Infrastructure |
NYC [101] | Real | 17,520 | 3 | 0.57 | Infrastructure | |
Occupancy [82] | Real | 6208 | 2 | 8 | 28.7 | Infrastructure |
Exathlon [102] | Real | 47,530 | 39 | 45 | 18.3 | Server monitoring |
MBD [103] | Real | 8640 | 5 | 26 | Server monitoring | |
MMS [103] | Real | 4370 | 50 | 7 | Server monitoring | |
PSM [104] | Real | 132,480 | 1 | 25 | 27.76 | Server monitoring |
SMD [105] | Real | 1,416,825 | 28 | 38 | 4.16 | Server monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Jiang, Y.; Zhang, R.; Wei, A.; Xie, J.; Pang, X. A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions. Sensors 2025, 25, 190. https://doi.org/10.3390/s25010190
Wang F, Jiang Y, Zhang R, Wei A, Xie J, Pang X. A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions. Sensors. 2025; 25(1):190. https://doi.org/10.3390/s25010190
Chicago/Turabian StyleWang, Fengling, Yiyue Jiang, Rongjie Zhang, Aimin Wei, Jingming Xie, and Xiongwen Pang. 2025. "A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions" Sensors 25, no. 1: 190. https://doi.org/10.3390/s25010190
APA StyleWang, F., Jiang, Y., Zhang, R., Wei, A., Xie, J., & Pang, X. (2025). A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions. Sensors, 25(1), 190. https://doi.org/10.3390/s25010190