Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors
Abstract
:1. Introduction
2. Brillouin Optical Time-Domain Analysis (BOTDA) Technique
3. Laboratory Calibrations
4. Engineering Geological Condition and Field Monitoring
4.1. Engineering Geological Condition
4.2. Field Monitoring
5. Monitoring Results and Analysis
5.1. Data Reading and Processing
5.2. Effect of Grouting and Cement Hardening
5.3. Effect of the Excavation Progress
6. Analytical Methods for the Calculation of the Lateral Pile Movement
7. Discussion
8. Conclusions
- (1)
- The internal temperature increased by about 69 °C on average due to the cement hydration reaction inside the measurement borehole (30 min after cement grouting was completed) and a corresponding shrinkage strain of 0.5% on average was measured, due to the hardening effect of the cement slurry;
- (2)
- The excavation depth had a significant influence on the strain distribution inside two boreholes in the monitored pile. A compressive strain distribution (inside the two opposite boreholes) of the monitored secant pile was clearly observed and increased substantially as the excavation progressed. The capping beam mounted at the pile heads exerted a substantial restrain on the induced deformation, decreasing the pile movement towards the excavation area;
- (3)
- The displacement distribution of the pile wall was computed by both NIM and FDM. The calculated maximum displacement of the presented secant pile wall increased as the excavation depth rose, which was consistent with the curve trends observed in previous studies and was also reconfirmed by the fact that the calculated between maximum lateral deflection and excavation depth equaled 0.423. A comparative study indicated that the lateral displacement of the presented pile was limited after excavation due to the high stiffness of the secant pile wall.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oh, S.; Lu, N. Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes. Eng. Geol. 2015, 184, 96–103. [Google Scholar] [CrossRef]
- Song, Y.-S.; Hong, W.-P.; Woo, K.-S. Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall. Eng. Geol. 2012, 129, 56–67. [Google Scholar] [CrossRef]
- Xu, D.-S.; Yin, J.-H. Analysis of excavation induced stress distributions of GFRP anchors in a soil slope using distributed fiber optic sensors. Eng. Geol. 2016, 213, 55–63. [Google Scholar] [CrossRef]
- Li, R.; Hu, X.; Chen, F.; Wang, X.; Xiong, H.; Wu, H. A systematic framework for DEM study of realistic gravel-sand mixture from particle recognition to macro-and micro-mechanical analysis. Transp. Geotech. 2022, 34, 100693. [Google Scholar] [CrossRef]
- Zhi, M.; Shang, Y.; Zhao, Y.; Lü, Q.; Sun, H. Investigation and monitoring on a rainfall-induced deep-seated landslide. Arab. J. Geosci. 2016, 9, 182. [Google Scholar] [CrossRef]
- Lin, F.; Wu, L.; Huang, R.; Zhang, H. Formation and characteristics of the Xiaoba landslide in Fuquan, Guizhou, China. Landslides 2018, 15, 669–681. [Google Scholar] [CrossRef]
- Wang, J.-J.; Liang, Y.; Zhang, H.-P.; Wu, Y.; Lin, X. A loess landslide induced by excavation and rainfall. Landslides 2014, 11, 141–152. [Google Scholar] [CrossRef]
- Tang, Z.-Q.; Yin, Z.-Y.; Jin, Y.-F.; Zhou, X.-W. A novel mesoscale modelling method for steel fibre-reinforced concrete with the combined finite-discrete element method. Cem. Concr. Compos. 2024, 149, 105479. [Google Scholar] [CrossRef]
- Mirmoradi, S.; Ehrlich, M. Effects of facing, reinforcement stiffness, toe resistance, and height on reinforced walls. Geotext. Geomembr. 2017, 45, 67–76. [Google Scholar] [CrossRef]
- Endley, S.N.; Dunlap, W.A.; Knuckey, D.M.; Sreerama, K. Performance of an Anchored Sheet-Pile Wall. In Geotechnical Measurements: Lab and Field; ASCE Library: Reston, VA, USA, 2000; pp. 179–197. [Google Scholar]
- Prästings, A.; Larsson, S.; Müller, R. Multivariate approach in reliability-based design of a sheet pile wall. Transp. Geotech. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Day, R.; Potts, D. Modelling sheet pile retaining walls. Comput. Geotech. 1993, 15, 125–143. [Google Scholar] [CrossRef]
- Ye, S.; Fang, G.; Zhu, Y. Model establishment and response analysis of slope reinforced by frame with prestressed anchors under seismic considering the prestress. Soil Dyn. Earthq. Eng. 2019, 122, 228–234. [Google Scholar] [CrossRef]
- Zhang, C.; Lijun, S.; Weizhi, C.; Jiang, G. Full-scale performance testing of bored piles with retaining walls in high cutting slope. Transp. Geotech. 2021, 29, 100563. [Google Scholar] [CrossRef]
- Adam, D.; Markiewicz, R.; Pulko, B.; Popović, Z.; Logar, J. Piles as retaining structures in slopes–Case histories. Piles Retaining Struct. 2017, 2, 3–15. [Google Scholar]
- Xu, D.-S.; Yin, J.-H.; Liu, H.-B. A new measurement approach for deflection monitoring of large-scale bored piles using distributed fiber sensing technology. Measurement 2018, 117, 444–454. [Google Scholar] [CrossRef]
- Pei, H.; Yin, J.; Wang, Z. Monitoring and analysis of cast-in-place concrete bored piles adjacent to deep excavation by using BOTDA sensing technology. J. Mod. Opt. 2019, 66, 703–709. [Google Scholar] [CrossRef]
- Glisic, B.; Inaudi, D.; Nan, C. Pile monitoring with fiber optic sensors during axial compression, pullout, and flexure tests. Transp. Res. Rec. 2002, 1808, 11–20. [Google Scholar] [CrossRef]
- Seo, H. Monitoring of CFA pile test using three dimensional laser scanning and distributed fiber optic sensors. Opt. Lasers Eng. 2020, 130, 106089. [Google Scholar] [CrossRef]
- Ruidong, L.; Yin, Z.-Y.; Shaoheng, H. 3D Reconstruction of Arbitrary Granular Media Utilizing Vision Foundation Model. Appl. Soft Comput. 2024, 169, 112599. [Google Scholar]
- Wang, P.; Yin, Z.Y.; Hicher, P.Y.; Cui, Y.J. Micro-mechanical analysis of one-dimensional compression of clay with DEM. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 2706–2724. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Zhang, Y.-F.; Li, G.-W.; Zhang, M.-X.; Liu, Z.-X. Recent progress of using Brillouin distributed fiber optic sensors for geotechnical health monitoring. Sens. Actuators A Phys. 2017, 258, 131–145. [Google Scholar] [CrossRef]
- Bersan, S.; Bergamo, O.; Palmieri, L.; Schenato, L.; Simonini, P. Distributed strain measurements in a CFA pile using high spatial resolution fibre optic sensors. Eng. Struct. 2018, 160, 554–565. [Google Scholar] [CrossRef]
- De Battista, N.; Kechavarzi, C.; Soga, K. Distributed fiber optic sensors for monitoring reinforced concrete piles using Brillouin scattering. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 30 May 2016; p. 99160U. [Google Scholar]
- Monsberger, C.M.; Lienhart, W.; Hayden, M. Distributed fiber optic sensing along driven ductile piles: Design, sensor installation and monitoring benefits. J. Civ. Struct. Health Monit. 2020, 10, 627–637. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Zhang, Y.-F.; Liu, L.-Q. Application of distributed optical fiber sensor for monitoring the mechanical performance of a driven pile. Measurement 2016, 88, 186–193. [Google Scholar] [CrossRef]
- Zheng, X.; Shi, B.; Zhu, H.-H.; Zhang, C.-C.; Wang, X.; Sun, M.-Y. Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system. Geomech. Eng. 2021, 24, 337–348. [Google Scholar]
- Sun, Y.; Li, X.; Ren, C.; Xu, H.; Han, A. Distributed fiber optic sensing and data processing of axial loaded precast piles. IEEE Access 2020, 8, 169136–169145. [Google Scholar] [CrossRef]
- Tang, Z.-Q.; Zhou, X.-W.; Jin, Y.-F.; Yin, Z.-Y.; Zhang, Q. A novel coupled bES-FEM formulation with SUPG stabilization for thermo-hydro-mechanical analysis in saturated porous media. Comput. Geotech. 2024, 173, 106454. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Yin, Z.Y.; Sheil, B. Enhanced Hybrid Algorithms for Segmentation and Reconstruction of Granular Grains From X-Ray Micro Computed-Tomography Images. Int. J. Numer. Anal. Methods Geomech. 2024, 48, 4206–4220. [Google Scholar] [CrossRef]
- Wang, P.; Xu, C.; Yin, Z.-Y.; Song, S.-X.; Xu, C.; Dai, S. A DEM-based Generic Modeling Framework for Hydrate-Bearing Sediments. Comput. Geotech. 2024, 171, 106287. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, B.; Wei, G.; Chen, S.; Zhang, D. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles. Smart Mater. Struct. 2012, 21, 115011. [Google Scholar] [CrossRef]
- Mohamad, H.; Soga, K.; Pellew, A.; Bennett, P.J. Performance monitoring of a secant-piled wall using distributed fiber optic strain sensing. J. Geotech. Geoenviron. Eng. 2011, 137, 1236–1243. [Google Scholar] [CrossRef]
- Mohamad, H.; Bennett, P.J.; Soga, K.; Klar, A.; Pellow, A. Distributed optical fiber strain sensing in a secant piled wall. In Proceedings of the 7th FMGM 2007: Field Measurements in Geomechanics, Boston, MA, USA, 24–28 September 2007; pp. 1–12. [Google Scholar]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent advances in machine learning for fiber optic sensor applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Gao, L.; Han, C.; Xu, Z.; Jin, Y.; Yan, J. Experimental study on deformation monitoring of bored pile based on BOTDR. Appl. Sci. 2019, 9, 2435. [Google Scholar] [CrossRef]
- Klar, A.; Bennett, P.J.; Soga, K.; Mair, R.J.; Tester, P.; Fernie, R.; St John, H.D.; Torp-Peterson, G. Distributed strain measurement for pile foundations. Proc. Inst. Civ. Eng. Geotech. Eng. 2006, 159, 135–144. [Google Scholar] [CrossRef]
- Wu, H.; Wan, Y.; Tang, M.; Chen, Y.; Zhao, C.; Liao, R.; Chang, Y.; Fu, S.; Shum, P.P.; Liu, D. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks. J. Light. Technol. 2018, 37, 2648–2653. [Google Scholar] [CrossRef]
- Yan, M.; Tan, X.; Mahjoubi, S.; Bao, Y. Strain transfer effect on measurements with distributed fiber optic sensors. Autom. Constr. 2022, 139, 104262. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, Z.; Wang, Y. Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX 2021, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Luo, L. Distributed fiber optics sensors for civil engineering infrastructure sensing. J. Struct. Integr. Maint. 2018, 3, 1–21. [Google Scholar] [CrossRef]
- Gao, L.; Gong, Y.; Liu, H.; Ji, B.; Xuan, Y.; Ma, Y. Experiment and numerical study on deformation measurement of cast-in-place concrete large-diameter pipe pile using optical frequency domain reflectometer technology. Appl. Sci. 2018, 8, 1450. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technol. Lett. 1989, 1, 107–108. [Google Scholar] [CrossRef]
- Omnisens S.A. User Manual (UM-018) for Omnisens, DITEST STA-R; Omnisens S.A.: Morges, Switzerland, 2009. [Google Scholar]
- Han, H.-M.; Shi, B.; Zhang, L.; Wei, G.-Q.; Chen, Q. Error analysis and experimental research of joint fiber-optic displacement sensor based on shear lag model. Measurement 2021, 186, 110106. [Google Scholar] [CrossRef]
- Mahjoubi, S.; Tan, X.; Bao, Y. Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer. Mech. Syst. Signal Process. 2022, 166, 108474. [Google Scholar] [CrossRef]
- Tan, X.; Bao, Y.; Zhang, Q.; Nassif, H.; Chen, G. Strain transfer effect in distributed fiber optic sensors under an arbitrary field. Autom. Constr. 2021, 124, 103597. [Google Scholar] [CrossRef]
- Habel, W.; Hofmann, D.; Hillemeier, B. Deformation measurements of mortars at early ages and of large concrete components on site by means of embedded fiber-optic microstrain sensors. Cem. Concr. Compos. 1997, 19, 81–102. [Google Scholar] [CrossRef]
- Silva-López, M.; Fender, A.; MacPherson, W.N.; Barton, J.S.; Jones, J.D.; Zhao, D.; Dobb, H.; Webb, D.J.; Zhang, L.; Bennion, I. Strain and temperature sensitivity of a single-mode polymer optical fiber. Opt. Lett. 2005, 30, 3129–3131. [Google Scholar] [CrossRef]
- Imai, M.; Igarashi, Y.; Shibata, M.; Miura, S. Experimental study on strain and deformation monitoring of asphalt structures using embedded fiber optic sensor. J. Civ. Struct. Health Monit. 2014, 4, 209–220. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Pelecanos, L.; de Battista, N.; Soga, K. Distributed fibre optic sensing for monitoring reinforced concrete piles. Geotech. Eng. J. SEAGS AGSSEA 2019, 50, 43–51. [Google Scholar]
- Mei, Y. Error Analysis for Distributed Fibre Optic Sensing Technology Based on Brillouin Scattering. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. [Google Scholar]
- Liu, X. Characterization of Brillouin Scattering Spectrum in LEAF Fiber. Master’s Thesis, University of Ottawa, Ottawa, ON, Canada, 2011. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- De Battista, N.; Kechavarzi, C.; Seo, H.; Soga, K.; Pennington, S. Distributed fibre optic sensors for measuring strain and temperature of cast-in-situ concrete test piles. In Transforming the Future of Infrastructure Through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, Virtual, 27–29 June 2016; ICE Publishing: London, UK; pp. 21–26.
- Mao, J.; Chen, J.; Cui, L.; Jin, W.; Xu, C.; He, Y. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors. Sensors 2015, 15, 8866–8883. [Google Scholar] [CrossRef] [PubMed]
- Fellenius, B.H.; Kim, S.-R.; Chung, S.-G. Long-term monitoring of strain in instrumented piles. J. Geotech. Geoenviron. Eng. 2009, 135, 1583–1595. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Pleszczynska, E.; Ruland, F. Grade Models and Methods for Data Analysis: With Applications for the Analysis of Data Populations; Springer Science & Business Media: Berlin, Germany, 2004; Volume 151. [Google Scholar]
- Tan, Y.; Wang, D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. II: Top-down construction of the peripheral rectangular pit. J. Geotech. Geoenviron. Eng. 2013, 139, 1894–1910. [Google Scholar] [CrossRef]
- Xu, D.-S.; Yin, J.-H.; Cao, Z.-Z.; Wang, Y.-L.; Zhu, H.-H.; Pei, H.-F. A new flexible FBG sensing beam for measuring dynamic lateral displacements of soil in a shaking table test. Measurement 2013, 46, 200–209. [Google Scholar] [CrossRef]
- Sivaraman, S.; Muthukkumaran, K. Non-linear performance analysis of free headed piles in consolidating soil subjected to lateral loads. Eng. Sci. Technol. Int. J. 2021, 24, 449–457. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Zhang, Y.-F.; Zhang, M.-X.; Leung, L.M.G.; Liu, L.-Q. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques. Sens. Actuators A Phys. 2016, 244, 184–197. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, P.; Yu, S. A new method for deformation monitoring on H-pile in SMW based on BOTDA. Measurement 2015, 70, 156–168. [Google Scholar] [CrossRef]
- Pelecanos, L.; Soga, K.; Elshafie, M.Z.; de Battista, N.; Kechavarzi, C.; Gue, C.Y.; Ouyang, Y.; Seo, H.-J. Distributed fiber optic sensing of axially loaded bored piles. J. Geotech. Geoenviron. Eng. 2018, 144, 04017122. [Google Scholar] [CrossRef]
- Finno, R.J.; Schubert, W.R. Clay liner compatibility in waste disposal practice. J. Environ. Eng. 1986, 112, 1070–1084. [Google Scholar] [CrossRef]
- Whittle, A.J.; Hashash, Y.M.; Whitman, R.V. Analysis of deep excavation in Boston. J. Geotech. Eng. 1993, 119, 69–90. [Google Scholar] [CrossRef]
- Powrie, W. The Behaviour of Diaphragm Walls in Clay. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1986. [Google Scholar]
- Ou, C.-Y.; Hsieh, P.-G.; Chiou, D.-C. Characteristics of ground surface settlement during excavation. Can. Geotech. J. 1993, 30, 758–767. [Google Scholar] [CrossRef]
- Wong, L.; Patron, B. Settlements induced by deep excavations in Taipei. In Proceedings of the 11th Southeast Asian Geotechnical Conference, Singapore, 4–8 May 1993; pp. 787–791. [Google Scholar]
- Wong, K.S.; Broms, B.B. Lateral wall deflections of braced excavations in clay. J. Geotech. Eng. 1989, 115, 853–870. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Wang, W. Wall and ground movements due to deep excavations in Shanghai soft soils. J. Geotech. Geoenviron. Eng. 2010, 136, 985–994. [Google Scholar] [CrossRef]
- Liu, G.B.; Jiang, R.J.; Ng, C.W.; Hong, Y. Deformation characteristics of a 38 m deep excavation in soft clay. Can. Geotech. J. 2011, 48, 1817–1828. [Google Scholar] [CrossRef]
- Wang, Z.W.; Ng, C.W.; Liu, G.B. Characteristics of wall deflections and ground surface settlements in Shanghai. Can. Geotech. J. 2005, 42, 1243–1254. [Google Scholar] [CrossRef]
Equipment Parameter | Parameter Setting |
---|---|
Sampling resolution | 0.2 m |
Spatial resolution | 0.5 m |
Reading interval | 2 ns |
Frequency step | 2 MHz |
Sensor line length | 300 m |
Specific Gravity | Dry Density (g/cm3) | Plastic Limit (%) | Liquid Limit (%) | Cohesion (kPa) | Friction Angle (°) |
---|---|---|---|---|---|
2.6 | 1.75 | 22.7 | 32.8 | 26 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.; Xu, C.; Chen, W.; Liu, J.; Tan, J. Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors. Sensors 2025, 25, 254. https://doi.org/10.3390/s25010254
Hong C, Xu C, Chen W, Liu J, Tan J. Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors. Sensors. 2025; 25(1):254. https://doi.org/10.3390/s25010254
Chicago/Turabian StyleHong, Chengyu, Chengkai Xu, Weibin Chen, Jianwei Liu, and Junkun Tan. 2025. "Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors" Sensors 25, no. 1: 254. https://doi.org/10.3390/s25010254
APA StyleHong, C., Xu, C., Chen, W., Liu, J., & Tan, J. (2025). Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors. Sensors, 25(1), 254. https://doi.org/10.3390/s25010254