Approach Towards the Development of Digital Twin for Structural Health Monitoring of Civil Infrastructure: A Comprehensive Review
Abstract
:1. Introduction
2. Background of DT Development
3. Literature Review Methodology
4. Data Acquisition and Transmission
4.1. Types of DTs
- DT Prototype: A DT prototype collects the necessary data and information before developing physical infrastructure from the modelled version. This information typically includes CAD drawings, design reports, and, in some cases, the bill of materials. For civil infrastructures, various tests, including destructive tests, are often conducted before constructing the physical twin. Destructive testing is critical in identifying undesirable scenarios and mitigating unpredictable conditions that may be challenging to evaluate using traditional prototypes. Once the DT prototype has been thoroughly validated, the physical twin can be constructed in the real world. This validation process is essential to ensure high levels of simulation accuracy, which directly contributes to the quality and reliability of the resulting physical twin.
- DT instance: This type of DT is the vice versa of the DT prototype. In these DTs, the physical twin exists, and a shift toward the development of the digitalised twin is needed throughout the life cycle of the physical twin. The process involves transmitting data from real space to virtual space to monitor system performance and evaluate any prediction. It is useful to validate the DT for high-accuracy behaviour and performance of the infrastructure.
- Performance DT: The process information obtained from minoring the physical twin can be aggregated and analysed to generate actionable data, which can then be used to optimise the structure’s performance in design and maintenance.
4.2. DT Architecture
- The physical world: This is the existing physical twin where the DT will need to be developed. Within the physical world, there are also some essential components that need to be considered, such as the use of the IoT (i.e., sensors), data security, and processing capabilities. In some cases, AI will also be required for big datasets.
- The virtual world: This is the developed DT itself, which will require major components during development using AI and ML for the DT model. The type of input data obtained from the physical world, and the approach of using the specific type of ML or DML are also essential to be considered as a sub-component within the virtual world component.
- Connectivity: This is the connectivity between the physical world and the virtual world, which will also need sub-components that require a considerable type of connectivity to be used, such as the use of the Internet, Bluetooth, satellite… etc., or maybe using the cabling network to transfer the data from the physical world to the virtual world (DT).
4.3. Sensor Data Collection
4.4. Data Robustness
4.5. Data Transmission
5. Structural Modelling and Health Assessment
5.1. Implementation of Virtual Model
5.2. Inverse Structural Modelling
5.3. Bridge Information Modelling (BrIM)
5.4. Modelling Technologies for DT of Bridges
5.5. Computer Vision Methods and Machine Learning
6. DT Platforms
6.1. Storage
6.2. Synchronicity
6.3. Platform Design
7. DT Application
7.1. DT Applications in Transportation Systems
7.2. DT Applications in Water Systems
7.3. DT Applications in Buildings and Smart Cities
8. Challenges in DT Development
8.1. Scalability and Cross-Domain Integration
8.2. Real Time Performance
8.3. Computational Cost vs. Accuracy
8.4. Research Gaps and Challenges
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodrigue, J.-P. The Geography of Transport Systems; Routledge: London, UK, 2020. [Google Scholar]
- Soga, K.; Schooling, J. Infrastructure sensing. Interface Focus 2016, 6, 20160023. [Google Scholar] [CrossRef] [PubMed]
- Yearbook 2021: Australian Infrastructure and Transport Statistics. 2021. Available online: https://www.bitre.gov.au/sites/default/files/documents/Bitre-yearbook-2021.pdf (accessed on 18 July 2023).
- AER Annual Report 2012–13. 2013. Available online: https://www.aer.gov.au/documents/aer-annual-report-2012-13 (accessed on 18 July 2023).
- Urban Public Transport: Updated Trends. 2014. Available online: https://www.bitre.gov.au/publications/2014/is_059 (accessed on 26 September 2023).
- Dhatrak, O.; Vemuri, V.; Gao, L. Considering deterioration propagation in transportation infrastructure maintenance planning. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 520–528. [Google Scholar] [CrossRef]
- Inman, D.J.; Farrar, C.R.; Junior, V.L.; Junior, V.S. Damage Prognosis: For Aerospace, Civil and Mechanical Systems; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bennetts, J.; Vardanega, P.; Taylor, C.; Denton, S. Bridge data—What do we collect and how do we use it? In Transforming the Future of Infrastructure Through Smarter Information: Proceedings of the International Conference on Smart Infrastructure and Construction, Cambridge, UK, 27–29 June 2016; ICE Publishing: London, UK, 2016; pp. 531–536. [Google Scholar]
- Agdas, D.; Rice, J.; Martinez, J.; Lasa, I. Comparison of visual inspection and structural-health monitoring as bridge condition assessment methods. J. Perform. Constr. Facil. 2016, 30, 1–10. [Google Scholar] [CrossRef]
- McRobbie, S.G.; Wright, M.A.; Chan, A. Can technology improve routine visual bridge inspections? Proc. Inst. Civ. Eng.-Bridge Eng. 2015, 168, 197–207. [Google Scholar]
- Mahmoodian, M.; Shahrivar, F.; Setunge, S.; Mazaheri, S. Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability 2022, 14, 8664. [Google Scholar] [CrossRef]
- Kryukov, I.; Böhm, S. Prospects and limitations of eddy current shearography for non-destructive testing of adhesively bonded structural joints. J. Adhes. 2019, 95, 874–886. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chase, J.G.; Mattila, J.; Myung, H.; Sawodny, O. Survey and introduction to the focused section on mechatronics for sustainable and resilient civil infrastructure. IEEE/ASME Trans. Mechatron. 2013, 18, 1637–1646. [Google Scholar] [CrossRef]
- Balageas, D.; Fritzen, C.-P.; Guemes, A. Structural Health Monitoring; ISTE: London, UK, 2006. [Google Scholar]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Ye, C.; Butler, L.; Bartek, C.; Iangurazov, M.; Lu, Q.; Gregory, A.; Girolami, M.; Middleton, C. A digital twin of bridges for structural health monitoring. In Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019. [Google Scholar]
- Park, H.; Easwaran, A.; Andalam, S. Challenges in digital twin development for cyber-physical production systems. In Cyber Physical Systems. Model-Based Design: 8th International Workshop, CyPhy 2018, and 14th International Workshop, WESE 2018, Turin, Italy, October 4–5, 2018; Revised Selected Papers 8; Springer: Berlin/Heidelberg, Germany, 2019; pp. 28–48. [Google Scholar]
- Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Draft modeling, simulation, information technology & processing roadmap. Technol. Area 2010, 11, 1–32. [Google Scholar]
- Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012; p. 1818. [Google Scholar]
- Rosen, R.; Von Wichert, G.; Lo, G.; Bettenhausen, K.D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-Pap. 2015, 48, 567–572. [Google Scholar] [CrossRef]
- Gabor, T.; Belzner, L.; Kiermeier, M.; Beck, M.T.; Neitz, A. A simulation-based architecture for smart cyber-physical systems. In Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC), Wuerzburg, Germany, 17–22 July 2016; pp. 374–379. [Google Scholar]
- Schluse, M.; Rossmann, J. From simulation to experimentable digital twins: Simulation-based development and operation of complex technical systems. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3–5 October 2016; pp. 1–6. [Google Scholar]
- Canedo, A. Industrial IoT lifecycle via digital twins. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, New York, NY, USA, 1–7 October 2016; p. 1. [Google Scholar]
- Eigner, M.; Detzner, A.; Schmidt, P.H.; Tharma, R. Definition des Digital Twin im Produktlebenszyklus. Z. Wirtsch. Fabr. 2019, 114, 345–350. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Lydon, G.P.; Hofer, J.; Svetozarevic, B.; Nagy, Z.; Schlueter, A. Coupling energy systems with lightweight structures for a net plus energy building. Appl. Energy 2017, 189, 310–326. [Google Scholar] [CrossRef]
- GHD. Infrastructure Maintenance—A Report for Infrastructure Australia; GHD: Sydney, Australia, 2015. [Google Scholar]
- Artus, M.; Koch, C. State of the art in damage information modeling for RC bridges—A literature review. Adv. Eng. Inform. 2020, 46, 101171. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, H.; Xu, J. Towards fully BIM-enabled building automation and robotics: A perspective of lifecycle information flow. Comput. Ind. 2022, 135, 103570. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- van Dinter, R.; Tekinerdogan, B.; Catal, C. Predictive maintenance using digital twins: A systematic literature review. Inf. Softw. Technol. 2022, 151, 107008. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Yang, L.; Fu, C.; Li, Y.; Su, L. Survey and study on intelligent monitoring and health management for large civil structure. Int. J. Intell. Robot. Appl. 2019, 3, 239–254. [Google Scholar] [CrossRef]
- Scuro, C.; Lamonaca, F.; Porzio, S.; Milani, G.; Olivito, R. Internet of Things (IoT) for masonry structural health monitoring (SHM): Overview and examples of innovative systems. Constr. Build. Mater. 2021, 290, 123092. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect; Springer International Publishing: Cham, Switzerland, 2016; Volume 5, pp. 59–74. [Google Scholar] [CrossRef]
- Shangguan, D.; Chen, L.; Ding, J. A hierarchical digital twin model framework for dynamic cyber-physical system design. In Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering, New York, NY, USA, 16–19 February 2019; pp. 123–129. [Google Scholar]
- Uhlenkamp, J.-F.; Hauge, J.B.; Broda, E.; Lütjen, M.; Freitag, M.; Thoben, K.-D. Digital twins: A maturity model for their classification and evaluation. IEEE Access 2022, 10, 69605–69635. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Mahmoodian, M.; Sidiq, A.; Nanayakkara, T.; Alavi, A.; Mazaheri, S.; Shahrivar, F.; Sun, Z.; Setunge, S. Innovative digital twin with artificial neural networks for real-time monitoring of structural response: A port structure case study. Ocean Eng. 2024, 312, 119187. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Segovia, M.; Garcia-Alfaro, J. Design, modeling and implementation of digital twins. Sensors 2022, 22, 5396. [Google Scholar] [CrossRef]
- Darvishi, H.; Ciuonzo, D.; Rossi, P.S. A machine-learning architecture for sensor fault detection, isolation, and accommodation in digital twins. IEEE Sens. J. 2022, 23, 2522–2538. [Google Scholar] [CrossRef]
- Fett, M.; Turner, E.; Breimann, R.; Kirchner, E. Extension of the system boundary of the Digital Twin onto the sensors of the Physical Twin through the introduction of redundant soft sensors. Forsch. Ingenieurwesen 2023, 87, 479–488. [Google Scholar] [CrossRef]
- Sun, Z.; Manuel, M.; Mahmoodian, M.; Sidiq, A.; Chan, R.; Jayasinghe, S.; Shahrivar, F.; Setunge, S. Optimal sensor placement applications for bridge structural health monitoring using the effective independence method. In Bridge Maintenance, Safety, Management, Digitalization and Sustainability; CRC Press: Boca Raton, FL, USA, 2024; pp. 2433–2440. [Google Scholar]
- Jayasinghe, S.; Nanayakkara, T.; Alavi, A.; Mahmoodian, M.; Sidiq, A.; Sun, Z.; Shahrivar, F.; Setunge, S. Real-time structural integrity assessment of bridge infrastructure. In Bridge Maintenance, Safety, Management, Digitalization and Sustainability; CRC Press: Boca Raton, FL, USA, 2024; pp. 2425–2432. [Google Scholar]
- Sternini, S.; Bottero, A.; Kuperman, W. Acoustic digital twin for passive structural health monitoring. JASA Express Lett. 2022, 2, 025601. [Google Scholar] [CrossRef] [PubMed]
- Sofi, A.; Regita, J.J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network—An overview. Mech. Syst. Signal Process. 2022, 163, 108113. [Google Scholar] [CrossRef]
- Glisic, B. Concise historic overview of strain sensors used in the monitoring of civil structures: The first one hundred years. Sensors 2022, 22, 2397. [Google Scholar] [CrossRef] [PubMed]
- Parida, L.; Moharana, S. Monitoring Loading Effects of Construction Steel Structure Using Piezo Transducer for Electromechanical Impedance Techniques. In Recent Advances in Materials, Mechanics and Structures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 371–380. [Google Scholar]
- Xu, L.; Zhang, D.; Huang, Y.; Shi, S.; Pan, H.; Bao, Y. Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors. Sensors 2022, 22, 8034. [Google Scholar] [CrossRef] [PubMed]
- Entezami, A.; Shariatmadar, H.; De Michele, C. Non-parametric empirical machine learning for short-term and long-term structural health monitoring. Struct. Health Monit. 2022, 21, 14759217211069842. [Google Scholar] [CrossRef]
- Caballero-Russi, D.; Ortiz, A.R.; Guzmán, A.; Canchila, C. Design and Validation of a Low-Cost Structural Health Monitoring System for Dynamic Characterization of Structures. Appl. Sci. 2022, 12, 2807. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, Z.; Li, M.; Yang, H.; Yue, F. Shape monitoring and damage identification in stiffened plates using inverse finite element method and Bayesian learning. J. Vib. Control 2023, 29, 2489–2500. [Google Scholar] [CrossRef]
- Silva, M.F.; Green, A.; Morales, J.; Meyerhofer, P.; Yang, Y.; Figueiredo, E.; Costa, J.C.; Mascareñas, D. 3D structural vibration identification from dynamic point clouds. Mech. Syst. Signal Process. 2022, 166, 108352. [Google Scholar] [CrossRef]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. LiDAR-Based Structural Health Monitoring: Applications in Civil Infrastructure Systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef]
- Li, X.; Guan, Y.; Law, S.; Zhao, W. Monitoring abnormal vibration and structural health conditions of an in-service structure from its SHM data. J. Sound Vib. 2022, 537, 117185. [Google Scholar] [CrossRef]
- Priyanka, E.; Thangavel, S.; Gao, X.-Z.; Sivakumar, N. Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques. J. Ind. Inf. Integr. 2022, 26, 100272. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.-L.; Lu, X.; Guan, Z.; Li, J. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom. Constr. 2021, 123, 103547. [Google Scholar] [CrossRef]
- Giordano, P.F.; Quqa, S.; Limongelli, M.P. Statistical approach for vibration-based damage localization in civil infrastructures using smart sensor networks. Infrastructures 2021, 6, 22. [Google Scholar] [CrossRef]
- Azzara, R.M.; Girardi, M.; Iafolla, V.; Padovani, C.; Pellegrini, D. Long-term dynamic monitoring of medieval masonry towers. Front. Built Environ. 2020, 6, 9. [Google Scholar] [CrossRef]
- Hoang, N.-D. Image processing based automatic recognition of asphalt pavement patch using a metaheuristic optimized machine learning approach. Adv. Eng. Inform. 2019, 40, 110–120. [Google Scholar] [CrossRef]
- Short, M.; Twiddle, J. An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment. Sensors 2019, 19, 3781. [Google Scholar] [CrossRef]
- Heo, G.; Son, B.; Kim, C.; Jeon, S.; Jeon, J. Development of a wireless unified-maintenance system for the structural health monitoring of civil structures. Sensors 2018, 18, 1485. [Google Scholar] [CrossRef]
- Rubert, T.; Perry, M.; Fusiek, G.; McAlorum, J.; Niewczas, P.; Brotherston, A.; McCallum, D. Field demonstration of real-time wind turbine foundation strain monitoring. Sensors 2017, 18, 97. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef]
- Kumberg, T.; Schneid, S.; Reindl, L. A wireless sensor network using GNSS receivers for a short-term assessment of the modal properties of the neckartal bridge. Appl. Sci. 2017, 7, 626. [Google Scholar] [CrossRef]
- Shan, B.; Zheng, S.; Ou, J. A stereovision-based crack width detection approach for concrete surface assessment. KSCE J. Civ. Eng. 2016, 20, 803–812. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q.; Ozer, E.; Fukuda, Y. A vision-based sensor for noncontact structural displacement measurement. Sensors 2015, 15, 16557–16575. [Google Scholar] [CrossRef] [PubMed]
- McAfee, M.; Kariminejad, M.; Weinert, A.; Huq, S.; Stigter, J.D.; Tormey, D. State estimators in soft sensing and sensor fusion for sustainable manufacturing. Sustainability 2022, 14, 3635. [Google Scholar] [CrossRef]
- Nota, G.; Postiglione, A.; Carvello, R. Text mining techniques for the management of predictive maintenance. Procedia Comput. Sci. 2022, 200, 778–792. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Svennevig, P.R.; Svidt, K.; Han, D.; Nielsen, H.K. A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy Build. 2022, 261, 111988. [Google Scholar] [CrossRef]
- Wang, K.-J.; Lee, Y.-H.; Angelica, S. Digital twin design for real-time monitoring—A case study of die cutting machine. Int. J. Prod. Res. 2021, 59, 6471–6485. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Arkouli, Z.; Georgoulias, K.; Makris, S. Degradation curves integration in physics-based models: Towards the predictive maintenance of industrial robots. Robot. Comput.-Integr. Manuf. 2021, 71, 102177. [Google Scholar] [CrossRef]
- Kaparthi, S.; Bumblauskas, D. Designing predictive maintenance systems using decision tree-based machine learning techniques. Int. J. Qual. Reliab. Manag. 2020, 37, 659–686. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, Q.; Yang, F.; Huo, Y.; Meng, S. Digital twin for the structural health management of reusable spacecraft: A case study. Eng. Fract. Mech. 2020, 234, 107076. [Google Scholar] [CrossRef]
- Shangguan, D.; Chen, L.; Ding, J. A digital twin-based approach for the fault diagnosis and health monitoring of a complex satellite system. Symmetry 2020, 12, 1307. [Google Scholar] [CrossRef]
- Moi, T.; Cibicik, A.; Rølvåg, T. Digital twin based condition monitoring of a knuckle boom crane: An experimental study. Eng. Fail. Anal. 2020, 112, 104517. [Google Scholar] [CrossRef]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar] [CrossRef]
- Rajesh, P.; Manikandan, N.; Ramshankar, C.; Vishwanathan, T.; Sathishkumar, C. Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput. Sci. 2019, 165, 18–24. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, J.; Ye, L.; Gao, R.X. Digital twin for machining tool condition prediction. Procedia CIRP 2019, 81, 1388–1393. [Google Scholar] [CrossRef]
- Werner, A.; Zimmermann, N.; Lentes, J. Approach for a holistic predictive maintenance strategy by incorporating a digital twin. Procedia Manuf. 2019, 39, 1743–1751. [Google Scholar] [CrossRef]
- Cattaneo, L.; Macchi, M. A digital twin proof of concept to support machine prognostics with low availability of run-to-failure data. IFAC-Paper 2019, 52, 37–42. [Google Scholar] [CrossRef]
- Seshadri, B.R.; Krishnamurthy, T. Structural health management of damaged aircraft structures using digital twin concept. In Proceedings of the 25th AIAA/AHS Adaptive Structures Conference, Grapevine, TX, USA, 9–13 January 2017; p. 1675. [Google Scholar]
- Middleton, C.; Fidler, P.; Vardanega, P. Bridge Monitoring: A Practical Guide; Thomas Telford (ICE Publishing): London, UK, 2016. [Google Scholar]
- Ahmed, H.; La, H.M.; Gucunski, N. Review of non-destructive civil infrastructure evaluation for bridges: State-of-the-art robotic platforms, sensors and algorithms. Sensors 2020, 20, 3954. [Google Scholar] [CrossRef]
- Doghri, W.; Saddoud, A.; Chaari Fourati, L. Cyber-physical systems for structural health monitoring: Sensing technologies and intelligent computing. J. Supercomput. 2022, 78, 766–809. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Rebouças, G.F.d.S.; Nejad, A.R. Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains. Forsch. Im Ingenieurwesen 2021, 85, 273–286. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Cheng, J.C.; Wang, Q.; Gan, V.J. BIM-based framework for automatic scheduling of facility maintenance work orders. Autom. Constr. 2018, 91, 15–30. [Google Scholar] [CrossRef]
- Hassanain, M.A.; Froese, T.M.; Vanier, D.J. Development of a maintenance management model based on IAI standards. Artif. Intell. Eng. 2001, 15, 177–193. [Google Scholar] [CrossRef]
- Reagan, D.; Sabato, A.; Niezrecki, C. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 2018, 17, 1056–1072. [Google Scholar] [CrossRef]
- Vien, B.S.; Wong, L.; Kuen, T.; Courtney, F.; Kodikara, J.; Chiu, W.K. Strain monitoring strategy of deformed membrane cover using unmanned aerial vehicle-assisted 3D photogrammetry. Remote Sens. 2020, 12, 2738. [Google Scholar] [CrossRef]
- Dehghan-Niri, E.; Salamone, S. A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures. Struct. Health Monit. 2015, 14, 73–85. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. Digital twin aided vulnerability assessment and risk-based maintenance planning of bridge infrastructures exposed to extreme conditions. Sustainability 2021, 13, 2051. [Google Scholar] [CrossRef]
- Shkarayev, S.; Krashantisa, R.; Tessler, A. An Inverse Interpolation Method Utilizing In-Flight Strain Measurements for Determining Loads and Structural Response of Aerospace Vehicles; NASA: Washington, DC, USA, 2004. [Google Scholar]
- Botkina, D.; Hedlind, M.; Olsson, B.; Henser, J.; Lundholm, T. Digital twin of a cutting tool. Procedia Cirp 2018, 72, 215–218. [Google Scholar] [CrossRef]
- Branlard, E.; Giardina, D.; Brown, C.S. Augmented Kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: A step towards digital-twin simulations. Wind Energy Sci. 2020, 5, 1155–1167. [Google Scholar] [CrossRef]
- Lei, S. Design of data acquisition system based on zigbee for wireless sensor networks. MATEC Web Conf. 2018, 246, 03036. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Nee, A.Y.C. Digital Twin Driven Smart Manufacturing; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Parviainen, P.; Tihinen, M.; Kääriäinen, J.; Teppola, S. Tackling the digitalization challenge: How to benefit from digitalization in practice. Int. J. Inf. Syst. Proj. Manag. 2017, 5, 63–77. [Google Scholar] [CrossRef]
- Legner, C.; Eymann, T.; Hess, T.; Matt, C.; Böhmann, T.; Drews, P.; Mädche, A.; Urbach, N.; Ahlemann, F. Digitalization: Opportunity and challenge for the business and information systems engineering community. Bus. Inf. Syst. Eng. 2017, 59, 301–308. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Flynn, E.B.; Todd, M.D. A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing. Mech. Syst. Signal Process. 2010, 24, 891–903. [Google Scholar] [CrossRef]
- Gunner, S.; Voyagaki, E.; Gavriel, G.; Carhart, N.; MacDonald, J.; Tryfonas, T.; Taylor, C.; Pregnolato, M. Digital twins for civil engineering: The Clifton Suspension Bridge (UK). In Proceedings of the International Conference on Structural Health Monitoring of Intelligent Infrastructure: Transferring Research into Practice, SHMII, Porto, Portugal, 30 June–2 July 2021; pp. 1561–1566. [Google Scholar]
- Goulet, J.-A. Probabilistic Machine Learning for Civil Engineers; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Bado, M.F.; Casas, J.R.; Barrias, A. Performance of Rayleigh-based distributed optical fiber sensors bonded to reinforcing bars in bending. Sensors 2018, 18, 3125. [Google Scholar] [CrossRef]
- Bolstad, W.M. Understanding Computational Bayesian Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 644. [Google Scholar]
- Callcut, M.; Cerceau Agliozzo, J.-P.; Varga, L.; McMillan, L. Digital twins in civil infrastructure systems. Sustainability 2021, 13, 11549. [Google Scholar] [CrossRef]
- Camposano, J.C.; Smolander, K.; Ruippo, T. Seven metaphors to understand digital twins of built assets. IEEE Access 2021, 9, 27167–27181. [Google Scholar] [CrossRef]
- Wang, M.; Lynch, J.; Sohn, H. Introduction to sensing for structural performance assessment and health monitoring. In Sensor Technologies for Civil Infrastructures; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–22. [Google Scholar]
- VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021, 145, 113524. [Google Scholar] [CrossRef]
- Wang, Z.; Broccardo, M.; Song, J. Hamiltonian Monte Carlo methods for subset simulation in reliability analysis. Struct. Saf. 2019, 76, 51–67. [Google Scholar] [CrossRef]
- Lu, R.; Brilakis, I. Digital twinning of existing reinforced concrete bridges from labelled point clusters. Autom. Constr. 2019, 105, 102837. [Google Scholar] [CrossRef]
- Dan, D.; Ying, Y.; Ge, L. Digital twin system of bridges group based on machine vision fusion monitoring of bridge traffic load. IEEE Trans. Intell. Transp. Syst. 2021, 23, 22190–22205. [Google Scholar] [CrossRef]
- Ghahari, F.; Malekghaini, N.; Ebrahimian, H.; Taciroglu, E. Bridge digital twinning using an output-only Bayesian model updating method and recorded seismic measurements. Sensors 2022, 22, 1278. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ong, S.-K.; Nee, A.Y. Real-time finite element structural analysis in augmented reality. Adv. Eng. Softw. 2015, 87, 43–56. [Google Scholar] [CrossRef]
- Gupta, D.K. Inverse Methods for Load Identification Augmented by Optimal Sensor Placement and Model Order Reduction. Ph.D. Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2013. [Google Scholar]
- You, R.; Ren, L.; Yuan, C.; Song, G. Two-dimensional deformation estimation of beam-like structures using inverse finite-element method: Theoretical study and experimental validation. J. Eng. Mech. 2021, 147, 04021019. [Google Scholar] [CrossRef]
- Davis, M.; Kersey, A.; Sirkis, J.; Friebele, E. Shape and vibration mode sensing using a fiber optic Bragg grating array. Smart Mater. Struct. 1996, 5, 759. [Google Scholar] [CrossRef]
- Jones, R.; Bellemore, D.; Berkoff, T.; Sirkis, J.; Davis, M.; Putnam, M.; Friebele, E.; Kersey, A. Determination of cantilever plate shapes using wavelength division multiplexed fiber Bragg grating sensors and a least-squares strain-fitting algorithm. Smart Mater. Struct. 1998, 7, 178. [Google Scholar] [CrossRef]
- Shkarayev, S.; Raman, A.; Tessler, A. Computational and experimental validation enabling a viable in-flight structural health monitoring technology. In Proceedings of the 1st European Workshop on Structural Health Monitoring, Paris, France, 10–12 July 2002. [Google Scholar]
- Bogert, P.; Haugse, E.; Gehrki, R. Structural shape identification from experimental strains using a modal transformation technique. In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, USA, 7–10 April 2003; p. 1626. [Google Scholar]
- Kim, N.-S.; Cho, N.-S. Estimating deflection of a simple beam model using fiber optic Bragg-grating sensors. Exp. Mech. 2004, 44, 433–439. [Google Scholar] [CrossRef]
- Mainçon, P. Inverse FEM I: Load and response estimates from measurements. In Proceedings of the 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 5–7 July 2004. [Google Scholar]
- Kang, L.-H.; Kim, D.-K.; Han, J.-H. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar] [CrossRef]
- Ko, W.L.; Richards, W.L.; Fleischer, V.T. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing; NASA: Washington, DC, USA, 2009. [Google Scholar]
- Nishio, M.; Mizutani, T.; Takeda, N. Structural shape reconstruction with consideration of the reliability of distributed strain data from a Brillouin-scattering-based optical fiber sensor. Smart Mater. Struct. 2010, 19, 035011. [Google Scholar] [CrossRef]
- Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, H.; Duan, X.; Fang, H. The application research of inverse finite element method for frame deformation estimation. Int. J. Aerosp. Eng. 2017, 2017, 1326309. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. Shape sensing of 3D frame structures using an inverse finite element method. Int. J. Solids Struct. 2012, 49, 3100–3112. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. An inverse finite element method for beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014, 23, 045027. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, L.; Bao, H.; Du, J. Shape sensing of variable cross-section beam using the inverse finite element method and isogeometric analysis. Measurement 2020, 158, 107656. [Google Scholar] [CrossRef]
- Chen, K.; Cao, K.; Gao, G.; Bao, H. Shape sensing of Timoshenko beam subjected to complex multi-node loads using isogeometric analysis. Measurement 2021, 184, 109958. [Google Scholar] [CrossRef]
- Savino, P. Shape sensing with inverse finite element method for slender structures. Struct. Eng. Mech. Int. J. 2019, 72, 217–227. [Google Scholar]
- You, R.; Ren, L. An enhanced inverse beam element for shape estimation of beam-like structures. Measurement 2021, 181, 109575. [Google Scholar] [CrossRef]
- Mindlin, R. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar] [CrossRef]
- Tessler, A.; Hughes, T.J. A three-node Mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Eng. 1985, 50, 71–101. [Google Scholar] [CrossRef]
- Kefal, A.; Oterkus, E.; Tessler, A.; Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J. 2016, 19, 1299–1313. [Google Scholar] [CrossRef]
- Kefal, A. An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures. Ocean Eng. 2019, 188, 106262. [Google Scholar] [CrossRef]
- Miller, E.J.; Manalo, R.; Tessler, A. Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Using the Inverse Finite Element Method; National Aeronautics and Space Administration, Armstrong Flight Research Center: Edwards, CA, USA, 2016. [Google Scholar]
- Kefal, A.; Tabrizi, I.; Tansan, M.; Kisa, E.; Yildiz, M. An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures. Compos. Struct. 2021, 258, 113431. [Google Scholar] [CrossRef]
- Oboe, D.; Colombo, L.; Sbarufatti, C.; Giglio, M. Shape sensing of a complex aeronautical structure with inverse finite element method. Sensors 2021, 21, 1388. [Google Scholar] [CrossRef]
- Cerracchio, P.; Gherlone, M.; Tessler, A. Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica 2015, 50, 2487–2496. [Google Scholar] [CrossRef]
- Esposito, M.; Gherlone, M. Composite wing box deformed-shape reconstruction based on measured strains: Optimization and comparison of existing approaches. Aerosp. Sci. Technol. 2020, 99, 105758. [Google Scholar] [CrossRef]
- Kefal, A.; Oterkus, E. Displacement and stress monitoring of a Panamax containership using inverse finite element method. Ocean Eng. 2016, 119, 16–29. [Google Scholar] [CrossRef]
- Kefal, A.; Mayang, J.B.; Oterkus, E.; Yildiz, M. Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology. Ocean Eng. 2018, 147, 256–267. [Google Scholar] [CrossRef]
- Vazquez, S.L.; Tessler, A.; Quach, C.C.; Cooper, E.G.; Parks, J.; Spangler, J.L. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods; NASA: Washington, DC, USA, 2005. [Google Scholar]
- Quach, C.; Vazquez, S.; Tessler, A.; Moore, J.; Cooper, E.; Spangler, J. Structural anomaly detection using fiber optic sensors and inverse finite element method. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, 15–18 August 2005; p. 6357. [Google Scholar]
- Colombo, L.; Sbarufatti, C.; Giglio, M. Definition of a load adaptive baseline by inverse finite element method for structural damage identification. Mech. Syst. Signal Process. 2019, 120, 584–607. [Google Scholar] [CrossRef]
- Li, M.; Kefal, A.; Cerik, B.C.; Oterkus, E. Dent damage identification in stiffened cylindrical structures using inverse Finite Element Method. Ocean Eng. 2020, 198, 106944. [Google Scholar] [CrossRef]
- Li, M.; Kefal, A.; Oterkus, E.; Oterkus, S. Structural health monitoring of an offshore wind turbine tower using iFEM methodology. Ocean Eng. 2020, 204, 107291. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Song, H.; Zhou, S.; Zhou, Z.; Zhou, W. Inverse finite element method for reconstruction of deformation in the gantry structure of heavy-duty machine tool using FBG sensors. Sensors 2018, 18, 2173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, S.; Li, H.; Ren, L. Deflection Estimation of Truss Structures Using Inverse Finite Element Method. Sensors 2023, 23, 1716. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Rashidi, M.; Yu, Y.; Samali, B. Integration of TLS-derived Bridge Information Modeling (BrIM) with a Decision Support System (DSS) for digital twinning and asset management of bridge infrastructures. Comput. Ind. 2023, 147, 103881. [Google Scholar] [CrossRef]
- Adibfar, A.; Costin, A.M. Creation of a Mock-up Bridge Digital Twin by Fusing Intelligent Transportation Systems (ITS) Data into Bridge Information Model (BrIM). J. Constr. Eng. Manag. 2022, 148, 04022094. [Google Scholar] [CrossRef]
- Haag, S.; Anderl, R. Digital twin–Proof of concept. Manuf. Lett. 2018, 15, 64–66. [Google Scholar] [CrossRef]
- Shim, C.; Kang, H.; Dang, N. Digital twin models for maintenance of cable-supported bridges. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving Data-Informed Decision-Making, Cambridge, UK, 8–10 July 2019; pp. 737–742. [Google Scholar]
- Febrianto, E.; Butler, L.; Girolami, M.; Cirak, F. Digital twinning of self-sensing structures using the statistical finite element method. Data-Centric Eng. 2022, 3, e31. [Google Scholar] [CrossRef]
- Mirasoli, G.; Brutti, C.; Groth, C.; Mancini, L.; Porziani, S.; Biancolini, M. Structural Health Monitoring of civil structures through FEM high-fidelity modelling. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1214, 012019. [Google Scholar] [CrossRef]
- Hrennikoff, A. Solution of problems of elasticity by the framework method. J. Appl. Mech. 1941, 8, A169–A175. [Google Scholar] [CrossRef]
- Benner, P.; Grivet-Talocia, S.; Quarteroni, A.; Rozza, G.; Schilders, W.; Silveira, L.M. System-and Data-Driven Methods and Algorithms; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Runesson, K.; Skyttebol, A.; Lindgren, L. Nonlinear Finite Element Analysis and. Compr. Struct. Integr. 2003, 3, 255. [Google Scholar]
- Hambli, R.; Chamekh, A.; Salah, H.B.H. Real-time deformation of structure using finite element and neural networks in virtual reality applications. Finite Elem. Anal. Des. 2006, 42, 985–991. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection—A review. Eng. Struct. 2018, 156, 105–117. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; An, S.; Hao, H. Computer vision based target-free 3D vibration displacement measurement of structures. Eng. Struct. 2021, 246, 113040. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; Li, Q.; An, S.; Hao, H. Monocular vision based 3D vibration displacement measurement for civil engineering structures. Eng. Struct. 2023, 293, 116661. [Google Scholar] [CrossRef]
- Souto Janeiro, A.; Fernández López, A.; Chimeno Manguan, M.; Pérez-Merino, P. Three-dimensional digital image correlation based on speckle pattern projection for non-invasive vibrational analysis. Sensors 2022, 22, 9766. [Google Scholar] [CrossRef]
- Sun, C.; Gu, D.; Lu, X. Three-dimensional structural displacement measurement using monocular vision and deep learning based pose estimation. Mech. Syst. Signal Process. 2023, 190, 110141. [Google Scholar] [CrossRef]
- Ma, Z.; Choi, J.; Sohn, H. Three-dimensional structural displacement estimation by fusing monocular camera and accelerometer using adaptive multi-rate Kalman filter. Eng. Struct. 2023, 292, 116535. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.-M.; Wang, X. Computer vision techniques in construction: A critical review. Arch. Comput. Methods Eng. 2021, 28, 3383–3397. [Google Scholar] [CrossRef]
- Polverino, L.; Abbate, R.; Manco, P.; Perfetto, D.; Caputo, F.; Macchiaroli, R.; Caterino, M. Machine learning for prognostics and health management of industrial mechanical systems and equipment: A systematic literature review. Int. J. Eng. Bus. Manag. 2023, 15, 18479790231186848. [Google Scholar] [CrossRef]
- Basko, A.; Ponomarova, O.; Prokopchuk, Y. Review of technologies for automatic health monitoring of structures and buildings. Int. J. Progn. Health Manag. 2021, 6. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Sivasuriyan, A.; Devarajan, P.; Krejsa, M.; Chalecki, M.; Żółtowski, M.; Kozarzewska, A.; Koda, E. Development of Intelligent Technologies in SHM on the Innovative Diagnosis in Civil Engineering—A Comprehensive Review. Buildings 2023, 13, 1903. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dong, C.-Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Malekloo, A.; Ozer, E.; AlHamaydeh, M.; Girolami, M. Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct. Health Monit. 2022, 21, 1906–1955. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y. Digital-twin-aided product design framework for IoT platforms. IEEE Internet Things J. 2021, 9, 9290–9300. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Research on intelligent dispatching system management platform for construction projects based on digital Twin and BIM technology. Adv. Civ. Eng. 2022, 2022, 8273451. [Google Scholar] [CrossRef]
- López, C.E.B. Real-time event-based platform for the development of digital twin applications. Int. J. Adv. Manuf. Technol. 2021, 116, 835–845. [Google Scholar] [CrossRef]
- Ivanov, S.; Nikolskaya, K.; Radchenko, G.; Sokolinsky, L.; Zymbler, M. Digital twin of city: Concept overview. In Proceedings of the 2020 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 17–19 November 2020; pp. 178–186. [Google Scholar]
- Bottani, E.; Cammardella, A.; Murino, T.; Vespoli, S. From the Cyber-Physical System to the Digital Twin: The process development for behaviour modelling of a Cyber Guided Vehicle in M2M logic. In Proceedings of the XXII Summer School Francesco Turco Industrial Systems Engineering, Palermo, Italy, 13–15 September 2017; pp. 1–7. [Google Scholar]
- Szalay, Z. Next generation X-in-the-loop validation methodology for automated vehicle systems. IEEE Access 2021, 9, 35616–35632. [Google Scholar] [CrossRef]
- Merkle, L.; Pöthig, M.; Schmid, F. Estimate e-golf battery state using diagnostic data and a digital twin. Batteries 2021, 7, 15. [Google Scholar] [CrossRef]
- Laamarti, F.; Badawi, H.F.; Ding, Y.; Arafsha, F.; Hafidh, B.; El Saddik, A. An ISO/IEEE 11073 standardized digital twin framework for health and well-being in smart cities. IEEE Access 2020, 8, 105950–105961. [Google Scholar] [CrossRef]
- Conejos Fuertes, P.; Martínez Alzamora, F.; Hervás Carot, M.; Alonso Campos, J. Building and exploiting a Digital Twin for the management of drinking water distribution networks. Urban Water J. 2020, 17, 704–713. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M. Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. ISPRS Int. J. Geo-Inf. 2020, 9, 240. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Cecconi, F.R.; Maltese, S.; Rinaldi, S.; Ciribini, A.L.C.; Flammini, A. Leveraging digital twin for sustainability assessment of an educational building. Sustainability 2021, 13, 480. [Google Scholar] [CrossRef]
- Lee, S.; Jain, S.; Zhang, Y.; Liu, J.; Son, Y.-J. A multi-paradigm simulation for the implementation of digital twins in surveillance applications. In Proceedings of the IIE Annual Conference, Online, 1–3 November 2020; pp. 79–84. [Google Scholar]
- Pregnolato, M.; Gunner, S.; Voyagaki, E.; De Risi, R.; Carhart, N.; Gavriel, G.; Tully, P.; Tryfonas, T.; Macdonald, J.; Taylor, C. Towards Civil Engineering 4.0: Concept, workflow and application of Digital Twins for existing infrastructure. Autom. Constr. 2022, 141, 104421. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Hosamo, M.H. Digital twin technology for bridge maintenance using 3d laser scanning: A review. Adv. Civ. Eng. 2022, 2022, 2194949. [Google Scholar] [CrossRef]
- BITRE. Road Trauma Australia 2021 Statistical Summary; BITRE: Canberra, Australia, 2022. [Google Scholar]
- Ali, W.A.; Roccotelli, M.; Fanti, M.P. Digital Twin in Intelligent Transportation Systems: A Review. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022; pp. 576–581. [Google Scholar]
- Wu, J.; Wang, X.; Dang, Y.; Lv, Z. Digital twins and artificial intelligence in transportation infrastructure: Classification, application, and future research directions. Comput. Electr. Eng. 2022, 101, 107983. [Google Scholar] [CrossRef]
- Spiryagin, M.; Edelmann, J.; Klinger, F.; Cole, C. Vehicle system dynamics in digital twin studies in rail and road domains. Veh. Syst. Dyn. 2023, 61, 1737–1786. [Google Scholar] [CrossRef]
- Rudskoy, A.; Ilin, I.; Prokhorov, A. Digital Twins in the Intelligent Transport Systems. Transp. Res. Procedia 2021, 54, 927–935. [Google Scholar] [CrossRef]
- Guo, Y.; Zou, K.; Chen, S.; Yuan, F.; Yu, F. 3D Digital Twin of Intelligent Transportation System based on Road-Side Sensing. J. Phys. Conf. Ser. 2021, 2083, 32022. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, F.; Qin, T. Research on the Construction of Highway Traffic Digital Twin System Based on 3D GIS Technology. IOP Conf. Ser. Earth Environ. Sci. 2021, 1802, 42045. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Bai, J.; Luo, Y.; Lv, H.; Lv, Z. Security in IoT-Enabled Digital Twins of Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 24, 2359–2367. [Google Scholar] [CrossRef]
- Shahrivar, F.; Li, C.Q.; Mahmoodian, M. Comparative analysis of fuzzy multi-criteria decision-making methods in maintenance prioritization of infrastructure assets. Int. J. Crit. Infrastruct. 2022, 18, 172–195. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Borup, M.; Brink-Kjær, A.; Christiansen, L.E.; Mikkelsen, P.S. Living and prototyping digital twins for urban water systems: Towards multi-purpose value creation using models and sensors. Water 2021, 13, 592. [Google Scholar] [CrossRef]
- Ramos, H.; Morani, M.C.; Carravetta, A.; Fecarotta, O.; Adeyeye, K.; López-Jiménez, P.; Pérez-Sánchez, M. New Challenges towards Smart Systems’ Efficiency by Digital Twin in Water Distribution Networks. Water 2022, 14, 1304. [Google Scholar] [CrossRef]
- Seyed Mostafa, H.; Yihai, F.; Brandon, K.W. A Digital Twin Framework for Enhancing Predictive Maintenance of Pumps in Wastewater Treatment Plants. In Proceedings of the 38th International Symposium on Automation and Robotics in Construction, Dubai, United Arab Emirates, 2–4 November 2021; pp. 88–93. [Google Scholar]
- Jing, L.; Sedigh, S.; Miller, A. Towards Integrated Simulation of Cyber-Physical Systems: A Case Study on Intelligent Water Distribution. In Proceedings of the Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2009, Chengdu, China, 12–14 December 2009; pp. 690–695. [Google Scholar]
- Wang, Z.; Song, H.; Watkins, D.W.; Ong, K.G.; Xue, P.; Yang, Q.; Shi, X. Cyber-physical systems for water sustainability: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 216–222. [Google Scholar] [CrossRef]
- Hatchett, S.; Uber, J.; Boccelli, D.; Haxton, T.; Janke, R.; Kramer, A.; Matracia, A.; Panguluri, S. Real-time distribution system modeling: Development, application and insights. In Proceedings of the Computing and Control for the Water Industry 2011, CCWI, Exeter, UK, 5–11 September 2011. [Google Scholar]
- Kartakis, S.; Abraham, E.; McCann, J. WaterBox: A Testbed for Monitoring and Controlling Smart Water Networks. In Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater’15), New York, NY, USA, 13–16 April 2015; pp. 1–6. [Google Scholar]
- Wang, L.; Liu, Y.; Yin, H.; Sun, W. Fault diagnosis and predictive maintenance for hydraulic system based on digital twin model. AIP Adv. 2022, 12, 65213. [Google Scholar] [CrossRef]
- Ginzburg, A.; Galina, K. Building Life-Cycle Management. Information Systems and Technologies: Selected Papers, 1st ed.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2022; Volume 231. [Google Scholar]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmstrom, J. Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Lydon, G.P.; Caranovic, S.; Hischier, I.; Schlueter, A. Coupled simulation of thermally active building systems to support a digital twin. Energy Build. 2019, 202, 109298. [Google Scholar] [CrossRef]
- Mathot, M.; Hohrath, B.; Rolvink, A.; Coenders, J. Design Modelling with Next Generation Parametric System Packhunt.io. In Impact: Design With All Senses; Springer International Publishing: Cham, Switzerland, 2019; pp. 277–287. [Google Scholar]
- Alizadehsalehi, S.; Yitmen, I. Digital twin-based progress monitoring management model through reality capture to extended reality technologies (DRX). Smart Sustain. Built Environ. 2021, 12, 200–236. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Qiuchen Lu, V.; Parlikad, A.K.; Woodall, P.; Ranasinghe, G.D.; Heaton, J. Developing a dynamic digital twin at a building level: Using Cambridge campus as case study. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving Data-Informed Decision-Making, Cambridge, UK, 8–10 July 2019; pp. 67–75. [Google Scholar]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a digital twin at building and city levels: Case study of West Cambridge campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Chevallier, Z.; Finance, B.; Boulakia, B.C. A Reference Architecture for Smart Building Digital Twin. In Proceedings of the SeDiT@ ESWC, Heraklion, Greece, 3 June 2020. [Google Scholar]
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart City Digital Twin–Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lv, H. Smart City Construction and Management by Digital Twins and BIM Big Data in COVID-19 Scenario. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 18, 117. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, K.; Wang, J.; Zhao, J.; Feng, C.; Yang, Y.; Zhou, W. Computer Vision Enabled Building Digital Twin Using Building Information Model. IEEE Trans. Ind. Inform. 2022, 19, 2684–2692. [Google Scholar] [CrossRef]
- Kawagishi, N.; Fuji, T.; Hotta, K.; Hotta, A. Comparative Study on Urban Virtual Modeling Platforms for Urban Planning and Design Practice. In Proceedings of the 25th CAADRIA Conference, Bangkok, Thailand, 5–6 August 2020. [Google Scholar] [CrossRef]
- Gobeawan, L.; Lin, E.; Tandon, A.; Yee, A.; Khoo, V.; Teo, S.; Yi, S.; Lim, C.; Wong, S.; Wise, D. Modeling trees for virtual singapore: From data acquisition to citygml models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W10, 55–62. [Google Scholar] [CrossRef]
- Bolton, A.; Enzer, M.; Schooling, J. The Gemini Principles: Guiding Values for the National Digital Twin and Information Management Framework; Centre for Digital Built Britain and Digital Framework Task Group: London, UK, 2018. [Google Scholar]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Longman, R.P.; Xu, Y.; Sun, Q.; Turkan, Y.; Riggio, M. Digital twin for monitoring In-service performance of post-tensioned self-centering cross-laminated timber shear walls. J. Comput. Civ. Eng. 2023, 37, 04022055. [Google Scholar] [CrossRef]
- Masroor, S.; Zachary, L. Designing an all-purpose force transducer. Exp. Mech. 1991, 31, 33–35. [Google Scholar] [CrossRef]
Scholar | Definition of DT |
---|---|
Shafto, et al. [19] | A wholistic probabilistic simulation that efficiently utilises physical models, sensor updates, and more that duplicate the flying twin. The DT is reflective and includes multiple interdependent vehicle systems. |
Glaessgen and Stargel [20] | An ultra-fidelity simulation that combines multiphysics and multiscale models with probabilistic methods to promptly reflect the state of its corresponding physical system, utilising historical data, real-time sensor inputs, and physical models. |
Rosen, et al. [21] | Highly accurate models depict a process’s present state and behaviour and interact with real-world surroundings. |
Gabor, et al. [22] | A sophisticated simulation that accurately depicts the asset’s overall behaviour by integrating previously separated models of various structural design aspects, enabled by increased computational power. |
Schluse and Rossmann [23] | Virtual replacements of physical items composed of virtual representations and communication capabilities. These objects function as intelligent nodes within the Internet of Things and services. |
Canedo [24] | A digital rendering of a tangible thing with emphasis on the object itself. |
Eigner, et al. [25] | DTs exit throughout the entire lifecycle in the form of virtual models and can be subdivided into the phases “as-designed”, “as-built”, and “as-maintained”. |
Jones, et al. [26] | A combination of physical and virtual entities, environments and processes should fulfil the listed characteristics and features. |
Qi, et al. [27] | The 5-dimensional DT model capable of serving as a universal reference embodiment to coordinate with engineering applications across several sectors. |
Attaran and Celik [28] | A complex simulation of the physical asset and a platform to enable future technologies such as speech capabilities, augmented reality, IoT, and artificial intelligence (AI) beyond the limitations of conventional civil engineering. |
Searching Index | Specific Content |
---|---|
Database | Scopus and Google Scholar. |
Article Type | Scientific/technical articles published in peer-reviewed journals and conferences. |
Search Strings | “Digital Twin”, “Built environment”, “Civil infrastructure”, “Data acquisition”, “Health monitoring”, “Digital Twin instrumentation”, etc. |
Search Period | From January 2005 to December 2023. |
Screening Procedure | The relevance of the research topic is judged by the contents of the abstract, introduction, and conclusion of every paper. |
Classification Scheme | The development of current DT transformation, DT-enabling technologies for data collection and transmission, DT health assessment, and DT-related project risks. |
Scholar | Method | Capabilities | Requirements |
---|---|---|---|
Davis, et al. [124] | Optimised trial functions and weights | Reconstruction of a simple static beam response from discrete strain measurements | To model more complex deformations, the approach requires a large number of trail functions and strain sensors |
Jones, et al. [125] | Least-squares formulation | Shape sensing of a cantilevered plate and plate deflections were obtained with classical bending assumptions | Axial strain fitted with a cubic polynomial |
Shkarayev, et al. [99], Shkarayev, et al. [126] | Two-step solution procedure; structural analysis of a plate/shell FE model, least-squares algorithm | Shape sensing of the plate and shell element | Reconstructs the loads first and then moved for displacements |
Bogert, et al. [127] | Modal transformation method—a large number of natural vibration modes were used | Strain-displacement transformations | Computationally intensive eigenvalue analysis and a detailed description of the elastic and inertial material properties for high-fidelity FE models |
Kim and Cho [128] | Classical beam equations, regression of experimental strain data | Continuous curvature function to evaluate beam deflection | Plates/shell structures |
Mainçon [129] | Finite Element Formulation | Sensitivity analysis is included for truss structures | Prior knowledge of a subset of applied loading and material properties |
Kang, et al. [130] | Vibration mode shapes | Reconstruction of a beam response due to dynamic excitations | The same number of mode shapes and strain sensors were required |
Ko, et al. [131] | Approximating the beam curvature using piece-wise continuous polynomials | Sufficiently accurate for predicting deflection and less accurate for assessing the cross-sectional twist | Included the bending and torsion modes of deformation |
Nishio, et al. [132] | Weighted least squares formulation | Reconstruct the deflection of a composite cantilevered plate | Weights were calculated for a given data acquisition apparatus, load case, and test article |
Scholar | Tested Physical Model and Purpose | Approach/Method |
---|---|---|
Haag and Anderl [161] | Beam bending experiment | CAD and stress analysis tools |
Jayasinghe, et al. [42] | Real-time SHM of a port structure | FE modelling with artificial neural networks |
Lu and Brilakis [118] | Modelling bridges to create a DT | A slicing-based object fitting method incorporating four types of labelled point cluster |
Ye, et al. [17] | SHM of bridges | Physics-based (FEM) and data-driven (linear dynamic modelling) |
Shim, et al. [162] | SHM of cable-supported bridges | FE modelling |
Kaewunruen, et al. [98] | Risk-based maintenance planning of bridges under extreme weather | BIM |
Dan, et al. [119] | DT of a bridge with measured traffic flow | Machine vision techniques and BrIM |
Lin, et al. [62] | Collapse fragility assessment of a bridge | FE modelling |
Febrianto, et al. [163] | SHM of bridges | Statistical FE modelling |
Ghahari, et al. [120] | Post-earthquake damage diagnosis of bridges | Output only Bayesian model updating technique through an FE model incorporating soil-structure interaction effects and foundation input motions |
Mirasoli, et al. [164] | Bridge structure | FE high-fidelity modelling |
Adibfar and Costin [160] | DT for a prototype Bridge | BIM |
Lifecycle Phase | DT Application | Technologies | Scholar |
---|---|---|---|
Planning and Design | Design of a thermal system that is blended with a light-weight roof structure | High-resolution models | [216] |
A new generation parametric system, Packhunt.io was presented along with two real-world cases | BIM, Extended reality, visual programming | [217] | |
Construction | Automated construction progress monitoring system | BIM, Extended Reality Technologies | [218] |
Advanced project management framework for construction operations | BIM, Data Mining (DM) techniques | [219] | |
Suggested a method to develop a DT for a building facade | Python coding | [215] | |
Operation and Maintenance | Dynamic DT demonstrator for a smart building as a proof of concept | BIM, WSN | [220] |
DT system architecture designed at both the building and city levels for the West Cambridge campus | BIM, Point Cloud Modal Generation, Anomaly Detection, Data Integration and Synchronisation | [220,221] | |
Software reference architecture for creating and managing Smart Building DT | Sensor Data Management, Smart Building, BIM Ontology, IoT, and DT | [222] | |
A city-scale DT–enabled urban energy management platform with benchmarking | Building Energy Benchmarking, Smart City | [223] | |
An architecture design of transportation system DT of the smart city involving Dig Data and Bayesian Network Structural Learning Algorithm | Smart City, BIM, ITS, Multimedia Big Data, Bayesian Network Structural Learning Algorithm | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Jayasinghe, S.; Sidiq, A.; Shahrivar, F.; Mahmoodian, M.; Setunge, S. Approach Towards the Development of Digital Twin for Structural Health Monitoring of Civil Infrastructure: A Comprehensive Review. Sensors 2025, 25, 59. https://doi.org/10.3390/s25010059
Sun Z, Jayasinghe S, Sidiq A, Shahrivar F, Mahmoodian M, Setunge S. Approach Towards the Development of Digital Twin for Structural Health Monitoring of Civil Infrastructure: A Comprehensive Review. Sensors. 2025; 25(1):59. https://doi.org/10.3390/s25010059
Chicago/Turabian StyleSun, Zhiyan, Sanduni Jayasinghe, Amir Sidiq, Farham Shahrivar, Mojtaba Mahmoodian, and Sujeeva Setunge. 2025. "Approach Towards the Development of Digital Twin for Structural Health Monitoring of Civil Infrastructure: A Comprehensive Review" Sensors 25, no. 1: 59. https://doi.org/10.3390/s25010059
APA StyleSun, Z., Jayasinghe, S., Sidiq, A., Shahrivar, F., Mahmoodian, M., & Setunge, S. (2025). Approach Towards the Development of Digital Twin for Structural Health Monitoring of Civil Infrastructure: A Comprehensive Review. Sensors, 25(1), 59. https://doi.org/10.3390/s25010059