Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning
Abstract
:1. Introduction
- We propose a DL framework with two networks implemented sequentially to reconstruct images. One network optimizes the λ-domain interference spectrum (or non-linear wavenumber domain) in Fourier space and is called FD-CNN model. The other network, called SD-CNN, optimizes the spatial domain. This dual optimization strategy helps the DL framework to extract the non-linear relationships in two different domains, leading to more robust information extraction.
- Each DL network used is an encoder–decoder architecture based on UNET [31]. Unlike the original UNET network, the model in this work also incorporates the residual connections and attention for enhanced performance. The FD-CNN uses a frequency-loss [32] function to account for missing linearity in the wavenumber domain. The combination of two optimization models facilitates the performance by guiding the dual-domain data-driven network. The experimental results show that this architecture is more streamlined and capable of generating OCT images efficiently.
- We also embedded a layer containing wavenumbers corresponding to each pixel value axially for every OCT A-scan as the input matrix to further guide the network training in SD-CNN. The ground truth is 7-averaged B-scans, obtained from the commercial OCT system [30] to suppress speckle noise.
- We observe the computational time complexity and image-enhancement characteristics of the proposed model in terms of morphological details, contours, edges (high-frequency content), and suppression of unwanted speckle noise by performing a comparative analysis. For a fair analysis, comparison is performed between the proposed reconstruction method and the processing approach in the commercial OCT Optores GmbH system [30].
2. Materials and Methods
2.1. Problem Formulation
2.2. Spatial Domain CNN
2.3. Fourier Domain CNN
2.4. Loss Function
3. Experiments
3.1. Imaging and Dataset Processing
3.2. Generalizability
3.3. Training, Testing, and Validations
3.4. Results
3.4.1. Performance Evaluation of the Entire Framework
3.4.2. Cross-Validation and Ablation Studies
3.4.3. Time Complexity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Bakator, M.; Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact. 2018, 2, 47. [Google Scholar] [CrossRef]
- Klein, T.; Wieser, W.; Eigenwillig, C.M.; Biedermann, B.R.; Huber, R. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 2011, 19, 3044–3062. [Google Scholar] [CrossRef] [PubMed]
- Wieser, W.; Draxinger, W.; Klein, T.; Karpf, S.; Pfeiffer, T.; Huber, R. High definition live 3D-OCT in vivo: Design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomed. Opt. Express 2014, 5, 2963–2977. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, T.; Petermann, M.; Draxinger, W.; Jirauschek, C.; Huber, R. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography. Biomed. Opt. Express 2018, 9, 4130–4148. [Google Scholar] [CrossRef] [PubMed]
- Dorrer, C.; Belabas, N.; Likforman, J.P.; Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. JOSA B 2000, 17, 1795–1802. [Google Scholar] [CrossRef]
- Szkulmowski, M.; Wojtkowski, M.; Bajraszewski, T.; Gorczyńska, I.; Targowski, P.; Wasilewski, W.; Kowalczyk, A.; Radzewicz, C. Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source. Opt. Commun. 2005, 246, 569–578. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Wang, Z. Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source. Opt. Rev. 2009, 16, 26–29. [Google Scholar] [CrossRef]
- Hillmann, D.; Huttmann, G.; Koch, P. Using nonequispaced fast Fourier transformation to process optical coherence tomography signals. In Proceedings of the European Conferences on Biomedical Optics, Munich, Germany, 14–18 June 2009; SPIE 7372 on Optical Coherence Tomography and Coherence Techniques IV. OPTICA Publishing Group: Munich, Germany, 2009; p. 73720R1-6. [Google Scholar] [CrossRef]
- Wu, T.; Ding, Z.; Wang, K.; Wang, C. Swept source optical coherence tomography based on non-uniform discrete Fourier transform. Chin. Opt. Lett. 2009, 7, 941–944. [Google Scholar] [CrossRef]
- Klein, T.; Huber, R. High-speed OCT light sources and systems. Biomed. Opt. Express 2017, 8, 828–859. [Google Scholar] [CrossRef]
- Braaf, B.; Vermeer, K.A.; Sicam, V.A.D.; van Zeeburg, E.; van Meurs, J.C.; de Boer, J.F. Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. Opt. Express 2011, 19, 20886–20903. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wei, X.; Yu, L.; Zhang, C.; Xu, J.; Wong, K.K.Y.; Tsia, K.K. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch. Biomed. Opt. Express 2015, 6, 1340–1350. [Google Scholar] [CrossRef]
- Jayaraman, V.; Cole, G.D.; Robertson, M.; Uddin, A.; Cable, A. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electron. Lett. 2012, 48, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Huber, R. Fourier domain mode locking (FDML): A new laser operating regime and applications for biomedical imaging, profilometry, ranging and sensing. In Advanced Solid-State Photonics; Optics InfoBase Conference Papers (OSA, 2009), 14, MA1; Optica Publishing Group: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Liang, K.; Wang, Z.; Ahsen, O.O.; Lee, H.C.; Potsaid, B.M.; Jayaraman, V.; Cable, A.; Mashimo, H.; Li, X.; Fujimoto, J.G. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. Optica 2018, 5, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nguyen, T.; Potsaid, B.; Jayaraman, V.; Burgner, C.; Chen, S.; Li, J.; Liang, K.; Cable, A.; Traverso, G.; et al. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes. Biomed. Opt. Express 2021, 12, 2384–2403. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.D.; Kim, G.H.; Shin, J.G.; Lee, B.; Kim, C.S.; Eom, T.J. Akinetic swept-source optical coherence tomography based on a pulse-modulated active mode locking fiber laser for human retinal imaging. Sci. Rep. 2018, 8, 17660. [Google Scholar] [CrossRef]
- Alonso-Caneiro, D.; Read, S.A.; Collins, M.J. Speckle reduction in optical coherence tomography imaging by affine-motion image registration. J. Biomed. Opt. 2011, 16, 116027. [Google Scholar] [CrossRef]
- Dar, S.U.; Yurt, M.; Shahdloo, M.; Ildız, M.E.; Tınaz, B.; Çukur, T. Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE J. Sel. Top. Signal Process. 2020, 14, 1072–1087. [Google Scholar] [CrossRef]
- Korkmaz, Y.; Dar, S.U.; Yurt, M.; Özbey, M.; Cukur, T. Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. IEEE Trans. Med. Imaging 2022, 41, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Schlemper, J.; Caballero, J.; Price, A.N.; Hajnal, J.V.; Rueckert, D. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 2018, 38, 280–290. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, X.; Chen, Y.; Xie, L.; Liu, J.; Zhang, Y.; Yan, J.; Zhu, H.; Hu, Y. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 2018, 8, 6700. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Chen, Y.; Zhang, J.; Zhang, W.; Sun, H.; Lv, Y.; Liao, P.; Zhou, J.; Wang, G. LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 2018, 37, 1333–1347. [Google Scholar] [CrossRef]
- Wang, R.; Fang, Z.; Gu, J.; Guo, Y.; Zhou, S.; Wang, Y.; Chang, C.; Yu, J. High-resolution image reconstruction for portable ultrasound imaging devices. EURASIP J. Adv. Signal Process. 2019, 2019, 56. [Google Scholar] [CrossRef]
- Jarosik, P.; Byra, M.; Lewandowski, M. Waveflow-towards integration of ultrasound processing with deep learning. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS) 2018, Kobe, Japan, 22–25 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.; Liu, H.; Kang-Mieler, J.J.; Ling, Y.; Gan, Y. Frequency-aware optical coherence tomography image super-resolution via conditional generative adversarial neural network. Biomed. Opt. Express 2023, 14, 5148–5161. [Google Scholar] [CrossRef]
- Ling, Y.; Dong, Z.; Li, X.; Gan, Y.; Su, Y. Deep learning empowered highly compressive SS-OCT via learnable spectral–spatial sub-sampling. Opt. Lett. 2023, 48, 1910–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, T.; Singh, M.; Çetintaş, E.; Luo, Y.; Rivenson, Y.; Larin, K.V.; Ozcan, A. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data. Light Sci. Appl. 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Wieser, W.; Biedermann, B.R.; Klein, T.; Eigenwillig, C.M.; Huber, R. Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 2010, 18, 14685–14704. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 234–241. [Google Scholar] [CrossRef]
- Jiang, L.; Dai, B.; Wu, W.; Loy, C.C. Focal frequency loss for image reconstruction and synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 13919–13929. [Google Scholar] [CrossRef]
- Zavareh, A.T.; Hoyos, S. Kalman-based real-time functional decomposition for the spectral calibration in swept source optical coherence tomography. IEEE Trans. Biomed. Circuits Syst. 2019, 14, 257–273. [Google Scholar] [CrossRef]
- Eigenwillig, C.M.; Biedermann, B.R.; Palte, G.; Huber, R. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express 2008, 16, 8916–8937. [Google Scholar] [CrossRef] [PubMed]
- Azimi, E.; Liu, B.; Brezinski, M.E. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography. J. Biomed. Opt. 2010, 15, 016005. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed. Opt. Express 2018, 9, 5129–5146. [Google Scholar] [CrossRef]
- Ni, G.; Chen, Y.; Wu, R.; Wang, X.; Zeng, M.; Liu, Y. Sm-Net OCT: A deep-learning-based speckle-modulating optical coherence tomography. Opt. Express 2021, 29, 25511–25523. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Liu, X.; Chen, S.; Xie, J.; Qing Lee, W.; Liu, L.; Kuan Lee, H. Resolution enhancement and realistic speckle recovery with generative adversarial modeling of micro-optical coherence tomography. Biomed. Opt. Express 2020, 11, 7236–7252. [Google Scholar] [CrossRef] [PubMed]
Method | Dataset | PSNR | SSIM | CNR | |
---|---|---|---|---|---|
Input | Overall | 8.94 | 0.08 | - | 0.71 |
Vein | 12.76 | 0.14 | 4.44 | 0.68 | |
Finger | 7.92 | 0.06 | 4.62 | 0.75 | |
Lemon | 7.14 | 0.05 | 5.69 | 0.64 | |
Tooth | 10.11 | 0.12 | 4.31 | 0.77 | |
Cherry | 8.79 | 0.07 | 5.04 | 0.73 | |
OCT Output | Overall | 19.95 | 0.35 | - | 0.87 |
Vein | 21.20 | 0.22 | 5.21 | 0.88 | |
Finger | 19.93 | 0.45 | 3.04 | 0.92 | |
Lemon | 20.40 | 0.26 | 6.73 | 0.78 | |
Tooth | 22.11 | 0.56 | 0.75 | 0.93 | |
Cherry | 17.55 | 0.30 | 3.96 | 0.85 | |
Proposed | Overall | 22.30 | 0.46 | - | 0.93 |
Vein | 21.98 | 0.43 | 8.71 | 0.93 | |
Finger | 21.75 | 0.42 | 4.86 | 0.94 | |
Lemon | 25.74 | 0.54 | 7.98 | 0.91 | |
Tooth | 21.61 | 0.32 | 6.48 | 0.92 | |
Cherry | 21.67 | 0.62 | 4.86 | 0.95 |
Volume | PSNR | SSIM |
---|---|---|
Flounder egg | 22.09 | 0.45 |
Seed (pea) | 21.53 | 0.42 |
SD-CNN | FD-CNN | SD-CNN + FD-CNN | PSNR | SSIM | ||
---|---|---|---|---|---|---|
Avg | Std | Avg | Std | |||
✓ | - | - | 20.81 | 2.64 | 0.42 | 0.11 |
- | ✓ | - | 10.97 | 0.80 | 0.03 | 0.01 |
- | - | ✓ | 22.30 | 2.51 | 0.46 | 0.08 |
Stepwise Time Complexity (s) | |||
---|---|---|---|
Operations | Time (s) | ||
Calibration | 0.008 | ||
Resampling in K-domain | 0.17 | ||
FFT | 0.05 | ||
Averaging (speckle reduction) | 0.07 | ||
Overall Time Complexity—Volume (s) | |||
OCT system [30] | Fourier Domain-CNN | Spatial Domain-CNN | Fourier Domain-CNN + Spatial Domain-CNN |
792 | 68.55 | 79.723 | 142.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viqar, M.; Sahin, E.; Stoykova, E.; Madjarova, V. Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning. Sensors 2025, 25, 93. https://doi.org/10.3390/s25010093
Viqar M, Sahin E, Stoykova E, Madjarova V. Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning. Sensors. 2025; 25(1):93. https://doi.org/10.3390/s25010093
Chicago/Turabian StyleViqar, Maryam, Erdem Sahin, Elena Stoykova, and Violeta Madjarova. 2025. "Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning" Sensors 25, no. 1: 93. https://doi.org/10.3390/s25010093
APA StyleViqar, M., Sahin, E., Stoykova, E., & Madjarova, V. (2025). Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning. Sensors, 25(1), 93. https://doi.org/10.3390/s25010093