Noise Reduction with Recursive Filtering for More Accurate Parameter Identification of Electrochemical Sources and Interfaces †
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Structure and the Importance of the R-RC Equivalent Electrical Circuit for Electrochemistry
2.2. The Method for Parameter Estimation of R-RC Equivalent Electrical Circuit [24]
2.3. Impact of Limited Number of Measurement Points on the Estimation Accuracy
2.4. Impact of Noise on the Estimation Accuracy
2.5. Recursive Filtering and the Selection of the Weighting Factor w
3. Simulation Results
3.1. The Synthetic Datasets
3.2. Impact of Frequency Distribution Type
3.3. Noise Impact on the Estimation Accuracy
3.4. Analysis of Characteristic Frequency Impact
3.5. Recursive Filtering for Noise Impact Reduction and Comparison with Previous Work
3.6. Reduced Number of Frequency Points
4. Experimental Results
4.1. Experimentally Obtained Impedance of Li-Ion Battery: Comparison with the PC-Based Software and the Related Works
4.2. Microcontroller-Based Implementation
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tröltzsch, U.; Kanoun, O.; Tränkler, H.-R. Characterizing Aging Effects of Lithium Ion Batteries by Impedance Spectroscopy. Electrochim. Acta 2006, 51, 1664–1672. [Google Scholar] [CrossRef]
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; et al. Application of Electrochemical Impedance Spectroscopy to Commercial Li-Ion Cells: A Review. J. Power Sources 2020, 480, 228742. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Baronti, F.; Chow, M.-Y. Online Adaptive Parameter Identification and State-of-Charge Coestimation for Lithium-Polymer Battery Cells. IEEE Trans. Ind. Electron. 2013, 61, 2053–2061. [Google Scholar] [CrossRef]
- von Hauff, E. Impedance Spectroscopy for Emerging Photovoltaics. J. Phys. Chem. C 2019, 123, 11329–11346. [Google Scholar] [CrossRef]
- Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the Resistance for the Use of Electrochemical Impedance Spectroscopy Analysis in Materials Chemistry. RSC Adv. 2021, 11, 27925–27936. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling Electrochemical Impedance Spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Middlemiss, L.A.; Rennie, A.J.R.; Sayers, R.; West, A.R. Characterisation of Batteries by Electrochemical Impedance Spectroscopy. Energy Rep. 2020, 6, 232–241. [Google Scholar] [CrossRef]
- Haeverbeke, M.V.; Stock, M.; De Baets, B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access 2022, 10, 51363–51379. [Google Scholar] [CrossRef]
- Vijay, P.; Samantaray, A.K.; Mukherjee, A. Development of a Thermodynamically Consistent Kinetic Model for Reactions in the Solid Oxide Fuel Cell. Comput. Chem. Eng. 2010, 34, 866–877. [Google Scholar] [CrossRef]
- Randles, J.E.B. Kinetics of Rapid Electrode Reactions. Discuss. Faraday Soc. 1947, 1, 11–19. [Google Scholar] [CrossRef]
- Giner-Sanz, J.J.; Ortega, E.M.; García-Gabaldón, M.; Pérez-Herranz, V. Theoretical Determination of the Stabilization Time in Galvanostatic EIS Measurements: The Simplified Randles Cell. J. Electrochem. Soc. 2018, 165, E628–E636. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Abrantes, J.C.C. Application of Electrochemical Impedance Spectroscopy (EIS) to Monitor the Corrosion of Reinforced Concrete: A New Approach. Constr. Build. Mater. 2016, 111, 98–104. [Google Scholar] [CrossRef]
- Tammam, R.H.; Saleh, M.M. On the Electrocatalytic Urea Oxidation on Nickel Oxide Nanoparticles Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2017, 794, 189–196. [Google Scholar] [CrossRef]
- García-Macías, E.; Downey, A.; D’Alessandro, A.; Castro-Triguero, R.; Laflamme, S.; Ubertini, F. Enhanced Lumped Circuit Model for Smart Nanocomposite Cement-Based Sensors under Dynamic Compressive Loading Conditions. Sens. Actuators Phys. 2017, 260, 45–57. [Google Scholar] [CrossRef]
- Li, J.; Birbilis, N.; Buchheit, R.G. Electrochemical Assessment of Interfacial Characteristics of Intermetallic Phases Present in Aluminium Alloy 2024-T3. Corros. Sci. 2015, 101, 155–164. [Google Scholar] [CrossRef]
- Garcia-Garcia, R.; Rivera, J.G.; Antaño-Lopez, R.; Castañeda-Olivares, F.; Orozco, G. Impedance Spectra of the Cathodic Hydrogen Evolution Reaction on Polycrystalline Rhenium. Int. J. Hydrogen Energy 2016, 41, 4660–4669. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, J.-Y.; Yun, J.; Lee, Y.; Lee, S.; Shin, S.J.; Bae, J.H.; Chung, T.D. Conduction through a SiO2 Layer Studied by Electrochemical Impedance Analysis. Electrochem. Commun. 2017, 76, 75–78. [Google Scholar] [CrossRef]
- Sanchez, B.; Bandarenka, A.S.; Vandersteen, G.; Schoukens, J.; Bragos, R. Novel Approach of Processing Electrical Bioimpedance Data Using Differential Impedance Analysis. Med. Eng. Phys. 2013, 35, 1349–1357. [Google Scholar] [CrossRef]
- Nováková, K.; Papež, V.; Sadil, J.; Knap, V. Review of Electrochemical Impedance Spectroscopy Methods for Lithium-Ion Battery Diagnostics and Their Limitations. Monatshefte Für Chem. Chem. Mon. 2024, 155, 227–232. [Google Scholar] [CrossRef]
- Sovljanski, V.; Paolone, M.; Tant, S.; Sainflou, D.P. Optimizing Experiments for Accurate Battery Circuit Parameters Estimation: Reduction and Adjustment of Frequency Set Used in Electrochemical Impedance Spectroscopy. arXiv 2025, arXiv:2501.06112. [Google Scholar] [CrossRef]
- Discrete Wavelet Transform-Based Denoising Electrochemical Impedance Spectroscopy Method for Improved State-of-Charge Estimation of a Lithium-Ion Battery. Available online: https://patents.google.com/patent/KR20240061500A/en?q=(Discrete+wavelet+transform-based+denoising+electrochemical+impedance+spectroscopy+method+for+improved+state-of-charge+estimation+of+lithium-ion+battery)&oq=Discrete+wavelet+transform-based+denoising+electrochemical+impedance+spectroscopy+method+for+improved+state-of-charge+estimation+of+a+lithium-ion+battery (accessed on 22 May 2025).
- Zulueta, A.; Zulueta, E.; Olarte, J.; Fernandez-Gamiz, U.; Lopez-Guede, J.M.; Etxeberria, S. Electrochemical Impedance Spectrum Equivalent Circuit Parameter Identification Using a Deep Learning Technique. Electronics 2023, 12, 5038. [Google Scholar] [CrossRef]
- Hua, Q.; Shen, M. Deep Learning-Enhanced Parameter Extraction for Equivalent Circuit Modeling in Electrochemical Impedance Spectroscopy. In Proceedings of the 2023 IEEE Nordic Circuits and Systems Conference (NorCAS), Aalborg, Denmark, 31 October–1 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Simić, M. A Low-Complexity Method for Processing EIS Data of R-RC Circuit and Parameter Identification. In Proceedings of the 2023 International Workshop on Impedance Spectroscopy (IWIS), Chemnitz, Germany, 26–29 September 2023; pp. 12–15. [Google Scholar] [CrossRef]
- Bullecks, B.; Suresh, R.; Rengaswamy, R. Rapid Impedance Measurement Using Chirp Signals for Electrochemical System Analysis. Comput. Chem. Eng. 2017, 106, 421–436. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circuit Model. Comput. Chem. Eng. 2014, 64, 114–123. [Google Scholar] [CrossRef]
- Kollmeyer, P. Panasonic 18650PF Li-Ion Battery Data. Mendeley Data 2018. [Google Scholar] [CrossRef]
- Simić, M.; Stavrakis, A.K.; Stojanović, G.M. A Low-Complexity Method for Parameter Estimation of the Simplified Randles Circuit With Experimental Verification. IEEE Sens. J. 2021, 21, 24209–24217. [Google Scholar] [CrossRef]
- Simic, M.; Stavrakis, A.K.; Jeoti, V.; Stojanovic, G.M. A Randles Circuit Parameter Estimation of Li-Ion Batteries With Embedded Hardware. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Mustafa, H.; Bourelly, C.; Vitelli, M.; Milano, F.; Molinara, M.; Ferrigno, L. SoC Estimation on Li-Ion Batteries: A New EIS-Based Dataset for Data-Driven Applications. Data Brief 2024, 57, 110947. [Google Scholar] [CrossRef]
- Wu, Y.; Balasingam, B. A Comparison of Battery Equivalent Circuit Model Parameter Extraction Approaches Based on Electrochemical Impedance Spectroscopy. Batteries 2024, 10, 400. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, X.; Meng, J.; Zhang, Y.; Knap, V.; Stroe, D.-I. Electrochemical Impedance Spectroscopy-Based Characterization and Modeling of Lithium-Ion Batteries Based on Frequency Selection. Batteries 2024, 11, 11. [Google Scholar] [CrossRef]
- Vasta, E.; Scimone, T.; Nobile, G.; Eberhardt, O.; Dugo, D.; De Benedetti, M.M.; Lanuzza, L.; Scarcella, G.; Patanè, L.; Arena, P.; et al. Models for Battery Health Assessment: A Comparative Evaluation. Energies 2023, 16, 632. [Google Scholar] [CrossRef]
- GitHub. Embedded Hardware-based EIS Analysis with Automated Noise Reduction. Available online: https://github.com/simicm1987/Embedded-Hardware-based-EIS-Analysis-with-Automated-Noise-Reduction/tree/main (accessed on 16 May 2025).
Reference Values: Rs = 330 Ω, Rp = 750 Ω. Cp = 10 nF and f0 = 21,220.66 Hz | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Frequency Distribution Type | Frequency Range | Number of Points | Rs [Ω] | RE [%] | Rp [Ω] | RE [%] | Cp [nF] | RE [%] | f0 [Hz] | RE [%] |
Linear | 1 kHz–100 kHz | 100 | 333.94 | 1.19 | 749.96 | 0.01 | 10.11 | 1.06 | 21,000.00 | 1.04 |
Logarithmic | 324.37 | 1.71 | 749.91 | 0.01 | 9.85 | 1.49 | 21,544.35 | 1.53 | ||
Reference Values: Rs = 330 Ω, Rp = 750 Ω. Cp = 4.7 nF and f0 = 45,150.34 Hz | ||||||||||
Frequency Distribution Type | Frequency Range | Number of Points | Rs [Ω] | RE [%] | Rp [Ω] | RE [%] | Cp [nF] | RE [%] | f0 [Hz] | RE [%] |
Linear | 1 kHz–100 kHz | 100 | 331.25 | 0.38 | 750.00 | <0.005 | 4.72 | 0.33 | 45,000.00 | 0.33 |
Logarithmic | 328.36 | 0.50 | 749.99 | <0.005 | 4.68 | 0.44 | 45,348.79 | 0.44 |
Noise Level [%] | Rs [Ω] | Rp [Ω] | Cp [nF] |
---|---|---|---|
220 Ω | 1000 Ω | 3.3 nF | |
0.5% | 221.03 ± 17.02 | 1003.10 ± 1.24 | 3.29 ± 0.112 |
1.0% | 221.26 ± 22.21 | 1006.96 ± 2.06 | 3.27 ± 0.145 |
5.0% | 228.54 ± 39.67 | 1040.94 ± 6.17 | 3.16 ± 0.243 |
10.0% | 237.54 ± 50.09 | 1085.33 ± 10.01 | 3.03 ± 0.285 |
Reference Values: Rs = 220 Ω, Rp = 470 Ω. Cp = 22 nF and f0 = 15,392.16 Hz | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Frequency Distribution Type | Frequency Range | Noise Level | Number of Points | Rs [Ω] | RE [%] | Rp [Ω] | RE [%] | Cp [nF] | RE [%] | f0 [Hz] | RE [%] |
Linear | 1 kHz–100 kHz | 0.5% | 100 | 226.82 | 3.10 | 471.25 | 0.27 | 22.52 | 2.34 | 15,000.00 | 2.55 |
Logarithmic | 207.49 | 5.69 | 470.41 | 0.09 | 20.76 | 5.64 | 16,297.51 | 5.88 | |||
Linear | 1% | 227.50 | 3.41 | 472.67 | 0.57 | 22.45 | 2.04 | 15,000.00 | 2.55 | ||
Logarithmic | 208.01 | 5.45 | 471.59 | 0.34 | 20.71 | 5.87 | 16,297.51 | 5.88 | |||
Reference Values: Rs = 1000 Ω, Rp = 220 Ω. Cp = 22 nF and f0 = 32,883.25 Hz | |||||||||||
Frequency Distribution Type | Frequency Range | Noise Level | Number of Points | Rs [Ω] | RE [%] | Rp [Ω] | RE [%] | Cp [nF] | RE [%] | f0 [Hz] | RE [%] |
Linear | 1 kHz–100 kHz | 0.5% | 100 | 1008.75 | 0.87 | 220.07 | 0.03 | 23.33 | 6.04 | 31,000.00 | 5.73 |
Logarithmic | 1010.03 | 1.00 | 220.66 | 0.30 | 23.08 | 4.89 | 31,257.16 | 4.95 | |||
Linear | 1% | 1010.82 | 1.08 | 220.52 | 0.24 | 23.28 | 5.82 | 31,000.00 | 5.73 | ||
Logarithmic | 1014.35 | 1.43 | 221.60 | 0.73 | 22.98 | 4.44 | 31,257.16 | 4.95 |
Dataset No. | f0 [kHz] | RE [%] | Rs [Ω] | RE [%] | Rp [Ω] | RE [%] | Cp [nF] | RE [%] | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Estimated | Reference | Estimated | Reference | Estimated | Reference | Estimated | |||||
1 | 61.88 | 62.00 | 0.19 | 346.79 | 346.60 | 0.06 | 334.20 | 334.20 | <0.005 | 7.69 | 7.68 | 0.12 |
2 | 29.74 | 30.00 | 0.87 | 884.24 | 883.66 | 0.07 | 130.70 | 130.70 | <0.005 | 40.95 | 40.59 | 0.88 |
3 | 75.71 | 76.00 | 0.38 | 798.75 | 797.73 | 0.13 | 534.33 | 534.33 | <0.005 | 3.93 | 3.91 | 0.51 |
4 | 25.17 | 25.00 | −0.68 | 63.67 | 64.60 | 1.46 | 267.10 | 267.09 | <0.005 | 23.67 | 23.84 | 0.72 |
5 | 66.50 | 66.00 | −0.75 | 617.70 | 621.23 | 0.57 | 941.65 | 941.62 | <0.005 | 2.54 | 2.56 | 0.79 |
6 | 41.30 | 41.00 | −0.73 | 877.49 | 879.30 | 0.21 | 493.74 | 493.73 | <0.005 | 7.81 | 7.86 | 0.64 |
7 | 31.94 | 32.00 | 0.19 | 801.07 | 800.21 | 0.11 | 903.90 | 903.89 | <0.005 | 5.51 | 5.50 | 0.18 |
8 | 97.92 | 98.00 | 0.08 | 690.72 | 690.63 | 0.01 | 234.58 | 234.58 | <0.005 | 6.93 | 6.92 | 0.14 |
9 | 23.30 | 23.00 | −1.29 | 606.78 | 610.67 | 0.64 | 595.57 | 595.52 | −0.01 | 11.47 | 11.62 | 1.31 |
10 | 73.034 | 73.00 | −0.05 | 753.37 | 753.63 | 0.03 | 981.51 | 981.51 | <0.005 | 2.22 | 2.22 | <0.005 |
Noise Level [%] | w | Rs [Ω] | Rp [Ω] | Cp [nF] | RMSE Improvement [%] |
---|---|---|---|---|---|
220 Ω | 1000 Ω | 3.3 nF | |||
0.5% | 0.86 ± 0.17 | 217.17 ± 11.43 | 1002.41 ± 1.69 | 3.25 ± 0.08 | 9.06 |
1.0% | 0.83 ± 0.18 | 216.04 ± 15.13 | 1005.17 ± 2.97 | 3.23 ± 0.10 | 8.09 |
5.0% | 0.53 ± 0.18 | 212.73 ± 26.08 | 1020.16 ± 10.50 | 3.08 ± 0.16 | 11.37 |
10.0% | 0.34 ± 0.13 | 211.47 ± 34.38 | 1029.51 ± 17.56 | 2.96 ± 0.20 | 14.78 |
Rs = 330.00 Ω, Rp = 100.00 Ω and Cp = 51.34 nF | ||||||||
---|---|---|---|---|---|---|---|---|
N | Noise Level: 0.5% | Noise Level: 1% | ||||||
Rs [Ω] | Rp [Ω] | Cp (nF) | RE [%] for f0 | Rs [Ω] | Rp [Ω] | Cp [nF] | RE [%] for f0 | |
200 | 330.83 | 100.25 | 51.21 | <0.005 | 336.51 | 100.70 | 54.50 | 6.45 |
150 | 333.40 | 100.18 | 53.72 | 4.61 | 334.38 | 100.48 | 53.57 | 4.61 |
100 | 330.68 | 100.21 | 51.23 | <0.005 | 331.36 | 100.41 | 51.13 | <0.005 |
50 | 334.44 | 100.08 | 54.84 | 6.45 | 335.44 | 100.38 | 54.67 | 6.45 |
20 | 327.32 | 99.70 | 49.48 | 4.07 | 326.59 | 99.48 | 49.59 | 4.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simić, M.; Medić, M.; Radovanović, M.; Risojević, V.; Bulić, P. Noise Reduction with Recursive Filtering for More Accurate Parameter Identification of Electrochemical Sources and Interfaces. Sensors 2025, 25, 3669. https://doi.org/10.3390/s25123669
Simić M, Medić M, Radovanović M, Risojević V, Bulić P. Noise Reduction with Recursive Filtering for More Accurate Parameter Identification of Electrochemical Sources and Interfaces. Sensors. 2025; 25(12):3669. https://doi.org/10.3390/s25123669
Chicago/Turabian StyleSimić, Mitar, Milan Medić, Milan Radovanović, Vladimir Risojević, and Patricio Bulić. 2025. "Noise Reduction with Recursive Filtering for More Accurate Parameter Identification of Electrochemical Sources and Interfaces" Sensors 25, no. 12: 3669. https://doi.org/10.3390/s25123669
APA StyleSimić, M., Medić, M., Radovanović, M., Risojević, V., & Bulić, P. (2025). Noise Reduction with Recursive Filtering for More Accurate Parameter Identification of Electrochemical Sources and Interfaces. Sensors, 25(12), 3669. https://doi.org/10.3390/s25123669