A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications
Abstract
1. Introduction
2. Paper Search Strategy
3. Overview of mmWave-Based Medical System
3.1. System Hardware Mechanism
3.2. Preprocessing
3.3. Physical Parameter Extraction
3.4. Parameter–Biomarker Connection
3.5. Medical Biomarker Applications
3.6. Validation and Evaluation
4. Physical Parameters and Processing Strategies
4.1. Structural Parameters
4.2. Motion Parameters
4.3. Material Properties
5. Parameter–Biomarker Models
5.1. Theoretical Model
5.2. Machine Learning
6. Biomarkers and Their Medical Applications
6.1. Respiration Pattern
6.2. Heart Rate
6.3. Body Temperature
6.4. Pulse Wave Velocity
6.5. Blood Pressure
6.6. Tissue Property
6.7. Human Gait
6.8. Involuntary Motion
7. Potential Applications
8. Challenges and Future Directions
8.1. Multimodal Fusion and Alignment
8.2. Model Generalization Across Subjects and Settings
8.3. Interpretability and Explainability
8.4. On-Device and Real-Time Processing
8.5. Privacy and Federated Learning
8.6. Comparison with Vision-Based Modalities
8.7. Commercialization Outlook and Clinical Translation
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, N.; Liu, K.; Ge, L.; Zhang, J. ApneaRadar: A 24GHz radar-based contactless sleep apnea detection system. In Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 372–376. [Google Scholar]
- Yang, Z.; Pathak, P.H.; Zeng, Y.; Liran, X.; Mohapatra, P. Vital sign and sleep monitoring using millimeter wave. ACM Trans. Sens. Netw. (TOSN) 2017, 13, 1–32. [Google Scholar] [CrossRef]
- Seeed Studio. MR24BSD1 Radar Datasheet. Available online: https://wiki.seeedstudio.com/Radar_MR24BSD1/ (accessed on 5 May 2024).
- DFRobot. C1001 mmWave Human Detection Sensor. Available online: https://wiki.dfrobot.com/SKU_SEN0623_C1001_mmWave_Human_Detection_Sensor (accessed on 10 February 2024).
- Mirbeik, A.; Ashinoff, R.; Jong, T.; Aued, A.; Tavassolian, N. Real-time high-resolution millimeter-wave imaging for in-vivo skin cancer diagnosis. Sci. Rep. 2022, 12, 4971. [Google Scholar] [CrossRef] [PubMed]
- Arab, H.; Chioukh, L.; Ardakani, M.D.; Dufour, S.; Tatu, S.O. Early-stage detection of melanoma skin cancer using contactless millimeter-wave sensors. IEEE Sens. J. 2020, 20, 7310–7317. [Google Scholar] [CrossRef]
- Mirbeik-Sabzevari, A.; Li, S.; Garay, E.; Nguyen, H.T.; Wang, H.; Tavassolian, N. Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection. IEEE Trans. Biomed. Eng. 2018, 66, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.; Venkatakrishnan, S.B. Electrical Impedance Spectroscopy at mmWave for Bio-Sensing. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 1728–1729. [Google Scholar]
- Shi, Z.; Gu, T.; Zhang, Y.; Zhang, X. mmbp: Contact-free millimetre-wave radar based approach to blood pressure measurement. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–9 November 2022; pp. 667–681. [Google Scholar]
- Liang, Y.; Zhou, A.; Wen, X.; Huang, W.; Shi, P.; Pu, L.; Zhang, H.; Ma, H. airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air. ACM Trans. Internet Things 2023, 4, 1–32. [Google Scholar] [CrossRef]
- Ran, Y.; Zhang, D.; Chen, J.; Hu, Y.; Chen, Y. Contactless blood pressure monitoring with mmwave radar. In Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 541–546. [Google Scholar]
- Hu, Q.; Zhang, Q.; Lu, H.; Wu, S.; Zhou, Y.; Huang, Q.; Chen, H.; Chen, Y.C.; Zhao, N. Contactless Arterial Blood Pressure Waveform Monitoring with mmWave Radar. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2024, 8, 178. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Li, Z.; Chen, X.; Xu, C.; Xu, W. Thermowave: A new paradigm of wireless passive temperature monitoring via mmwave sensing. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Canil, M.; Pegoraro, J.; Rossi, M. MilliTRACE-IR: Contact tracing and temperature screening via mmWave and infrared sensing. IEEE J. Sel. Top. Signal Process. 2021, 16, 208–223. [Google Scholar] [CrossRef]
- Omer, A.E.; Safavi-Naeini, S.; Hughson, R.; Shaker, G. Blood glucose level monitoring using an FMCW millimeter-wave radar sensor. Remote Sensing 2020, 12, 385. [Google Scholar] [CrossRef]
- Nikandish, R.; Sheedy, C.; He, J.; Crowe, R.; Rao, D. Contactless Glucose Sensing Using Miniature mm-Wave Radar and Tiny Machine Learning. IEEE J. Microwaves 2024, 5, 281–290. [Google Scholar] [CrossRef]
- Siegel, P.H.; Tang, A.; Virbila, G.; Kim, Y.; Chang, M.F.; Pikov, V. Compact non-invasive millimeter-wave glucose sensor. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; pp. 1–3. [Google Scholar]
- Zhang, J.; Xi, R.; He, Y.; Sun, Y.; Guo, X.; Wang, W.; Na, X.; Liu, Y.; Shi, Z.; Gu, T. A survey of mmWave-based human sensing: Technology, platforms and applications. IEEE Commun. Surv. Tutor. 2023, 25, 2052–2087. [Google Scholar] [CrossRef]
- Shastri, A.; Valecha, N.; Bashirov, E.; Tataria, H.; Lentmaier, M.; Tufvesson, F.; Rossi, M.; Casari, P. A review of millimeter wave device-based localization and device-free sensing technologies and applications. IEEE Commun. Surv. Tutor. 2022, 24, 1708–1749. [Google Scholar] [CrossRef]
- van Berlo, B.; Elkelany, A.; Ozcelebi, T.; Meratnia, N. Millimeter wave sensing: A review of application pipelines and building blocks. IEEE Sens. J. 2021, 21, 10332–10368. [Google Scholar] [CrossRef]
- Islam, M.S.; Chong, U. Noise reduction of continuous wave radar and pulse radar using matched filter and wavelets. EURASIP J. Image Video Process. 2014, 2014, 43. [Google Scholar] [CrossRef]
- Texas Instruments. Memory Compression and Decompression Engine for TI mmWave Radar. Available online: https://www.ti.com/lit/an/swra663/swra663.pdf (accessed on 21 January 2025).
- Di Meo, S.; Matrone, G.; Pasian, M. Experimental validation on tissue-mimicking phantoms of millimeter-wave imaging for breast cancer detection. Appl. Sci. 2021, 11, 432. [Google Scholar] [CrossRef]
- Oppelt, D.; Adametz, J.; Groh, J.; Goertz, O.; Vossiek, M. MIMO-SAR based millimeter-wave imaging for contactless assessment of burned skin. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1383–1386. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y.; Qiao, L.; Wang, Y.; Zhao, Z. Surface-roughness measurement based on scalar field correlation with active millimeter-wave imaging system. Appl. Opt. 2019, 58, 9186–9194. [Google Scholar] [CrossRef]
- Li, W.; Zhang, D.; Li, Y.; Wu, Z.; Chen, J.; Zhang, D.; Hu, Y.; Sun, Q.; Chen, Y. Real-time fall detection using mmwave radar. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 16–20. [Google Scholar]
- Nelson, J.L.; Cobb, C.; Keller, J.L.; Traylor, M.K.; Nelson, D.A.; Francis, C.M. Millimeter wave radiation to measure blood flow in healthy human subjects. Physiol. Meas. 2024, 45, 095009. [Google Scholar] [CrossRef]
- Ling, Z.; Zhou, W.; Ren, Y.; Wang, J.; Guo, L. Non-contact heart rate monitoring based on millimeter wave radar. IEEE Access 2022, 10, 74033–74044. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Y.; Li, F.; Ding, G.; Gao, Y. Mmwave-RM: A respiration monitoring and pattern classification system based on mmwave radar. Sensors 2024, 24, 4315. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, F.; Wang, B.; Liu, K.R. mSense: Towards mobile material sensing with a single millimeter-wave radio. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Taylor, Z.D.; Garritano, J.; Sung, S.; Bajwa, N.; Bennett, D.B.; Nowroozi, B.; Tewari, P.; Sayre, J.; Hubschman, J.P.; Deng, S.; et al. THz and mm-wave sensing of corneal tissue water content: Electromagnetic modeling and analysis. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 170–183. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, S.I.; Ziskin, M.C. Millimeter-wave absorption by cutaneous blood vessels: A computational study. IEEE Trans. Biomed. Eng. 2009, 56, 2380–2388. [Google Scholar] [CrossRef]
- Zhadobov, M.; Chahat, N.; Sauleau, R.; Le Quement, C.; Le Drean, Y. Millimeter-wave interactions with the human body: State of knowledge and recent advances. Int. J. Microw. Wirel. Technol. 2011, 3, 237–247. [Google Scholar] [CrossRef]
- Iyer, S.; Zhao, L.; Mohan, M.P.; Jimeno, J.; Siyal, M.Y.; Alphones, A.; Karim, M.F. mm-Wave radar-based vital signs monitoring and arrhythmia detection using machine learning. Sensors 2022, 22, 3106. [Google Scholar] [CrossRef]
- Bauder, C.; Moadi, A.K.; Rajagopal, V.; Wu, T.; Liu, J.; Fathy, A.E. mm-MURE: mmWave-Based Multi-Subject Respiration Monitoring via End-to-End Deep Learning. IEEE J. Electromagn. Microwaves Med. Biol. 2024, 9, 49–61. [Google Scholar] [CrossRef]
- Singh, L.; You, S.; Jeong, B.J.; Koo, C.; Kim, Y. Remote estimation of blood pressure using millimeter-wave frequency-modulated continuous-wave radar. Sensors 2023, 23, 6517. [Google Scholar] [CrossRef]
- Geng, F.; Bai, Z.; Zhang, H.; Liu, C.; Wang, P.; Li, Z.; Du, L.; Chen, X.; Fang, Z. Non-Contact Stable Arterial Pulse Measurement Using mmWave Array Radar. Bioengineering 2024, 11, 1203. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Chen, Z.; Zhang, W.; Wang, Z.; Guo, X.; Guan, J.; Li, G. Detection of Sleep Apnea-Hypopnea Events Using Millimeter-wave Radar and Pulse Oximeter. In Proceedings of the 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 15–19 July 2024; pp. 1–5. [Google Scholar]
- Chen, Y.; Yuan, J.; Tang, J. A high precision vital signs detection method based on millimeter wave radar. Sci. Rep. 2024, 14, 25535. [Google Scholar] [CrossRef]
- Zhao, L.; Lyu, R.; Lin, Q.; Zhou, A.; Zhang, H.; Ma, H.; Wang, J.; Shao, C.; Tang, Y. mmarrhythmia: Contactless arrhythmia detection via mmwave sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2024, 8, 1–25. [Google Scholar] [CrossRef]
- Hao, Z.; Gao, Y.; Tang, Y.; Wang, Y.; Fan, K.; Li, F. FMCW-based contactless heart rate monitoring. Sci. Rep. 2025, 15, 2616. [Google Scholar] [CrossRef]
- Mercuri, M.; Russo, P.; Glassee, M.; Castro, I.D.; De Greef, E.; Rykunov, M.; Bauduin, M.; Bourdoux, A.; Ocket, I.; Crupi, F.; et al. Automatic radar-based 2-D localization exploiting vital signs signatures. Sci. Rep. 2022, 12, 7651. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, Y.; Yang, Q.; Deng, B.; Wang, H. Millimeter-wave array radar-based human gait recognition using multi-channel three-dimensional convolutional neural network. Sensors 2020, 20, 5466. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Báruson, H.S.L.; Sundvall, A. Walking step monitoring with a millimeter-wave radar in real-life environment for disease and fall prevention for the elderly. Sensors 2022, 22, 9901. [Google Scholar] [CrossRef]
- Alanazi, M.A.; Alhazmi, A.K.; Alsattam, O.; Gnau, K.; Brown, M.; Thiel, S.; Jackson, K.; Chodavarapu, V.P. Towards a low-cost solution for gait analysis using millimeter wave sensor and machine learning. Sensors 2022, 22, 5470. [Google Scholar] [CrossRef]
- Feng, X.; Shan, Z.; Zhao, Z.; Xu, Z.; Zhang, T.; Zhou, Z.; Deng, B.; Guan, Z. Millimeter-Wave Radar Monitoring for Elder’s Fall Based on Multi-View Parameter Fusion Estimation and Recognition. Remote Sens. 2023, 15, 2101. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, H.; Xia, D.; Pan, Y.; Li, Z.; Wang, W.; Li, Z.; Wang, L.; Chen, G. mP-Gait: Fine-grained Parkinson’s Disease Gait Impairment Assessment with Robust Feature Analysis. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2024, 8, 1–31. [Google Scholar] [CrossRef]
- Hu, S.; Ackun, P.; Zhang, X.; Cao, S.; Barton, J.B.; Hector, M.G.; Fain, M.J.; Toosizadeh, N. mmWave Radar for Sit-to-Stand Analysis: A Comparative Study with Wearables and Kinect. IEEE Trans. Biomed. Eng. 2025. [Google Scholar] [CrossRef]
- Gillani, N.; Arslan, T.; Mead, G. An unobtrusive method for remote quantification of Parkinson’s and essential Tremor using Mm-Wave sensing. IEEE Sens. J. 2023, 23, 10118–10131. [Google Scholar] [CrossRef]
- Smulders, P. Analysis of human skin tissue by millimeter-wave reflectometry. Ski. Res. Technol. 2013, 19, e209–e216. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Di Meo, S.; Crocco, L.; Isernia, T.; Matrone, G.; Pasian, M. A quantitative approach for millimeter-wave breast cancer imaging. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–3. [Google Scholar]
- Owda, A.Y.; Salmon, N.; Shylo, S.; Owda, M. Assessment of bandaged burn wounds using porcine skin and millimetric radiometry. Sensors 2019, 19, 2950. [Google Scholar] [CrossRef]
- Bagheri, M.O.; Gharamohammadi, A.; Abu-Sardanah, S.; Ramahi, O.M.; Shaker, G. Radar near-field sensing using metasurface for biomedical applications. Commun. Eng. 2024, 3, 51. [Google Scholar]
- He, W.; Hu, A.; Dong, C.; Chen, X.; Gong, J.; Miao, J. Design of a compact analog complex correlator for millimeter-wave radiation temperature measurement system. Micromachines 2023, 14, 867. [Google Scholar] [CrossRef]
- Beltrão, G.; Stutz, R.; Hornberger, F.; Martins, W.A.; Tatarinov, D.; Alaee-Kerahroodi, M.; Lindner, U.; Stock, L.; Kaiser, E.; Goedicke-Fritz, S.; et al. Contactless radar-based breathing monitoring of premature infants in the neonatal intensive care unit. Sci. Rep. 2022, 12, 5150. [Google Scholar] [CrossRef] [PubMed]
- Orlacchio, R.; Le Page, Y.; Le Drean, Y.; Zhadobov, M. Millimeter-wave pulsed heating in vitro: Effect of pulse duration. IEEE J. Electromagn. Microwaves Med. Biol. 2023, 7, 136–143. [Google Scholar] [CrossRef]
- Spiliotis, A.E.; Gäbelein, G.; Holländer, S.; Scherber, P.R.; Glanemann, M.; Patel, B. Microwave ablation compared with radiofrequency ablation for the treatment of liver cancer: A systematic review and meta-analysis. Radiol. Oncol. 2021, 55, 247. [Google Scholar] [CrossRef]
- Lindley-Hatcher, H.; Wang, J.; Hernandez-Serrano, A.I.; Hardwicke, J.; Nurumbetov, G.; Haddleton, D.M.; Pickwell-MacPherson, E. Monitoring the effect of transdermal drug delivery patches on the skin using terahertz sensing. Pharmaceutics 2021, 13, 2052. [Google Scholar] [CrossRef]
- Hegazy, E.A.; El-Antrawy, M.A. Impact of high frequency electromagnetic radiation on bacterial survival and antibiotic activity in exposed bacteria. Sci. Rep. 2025, 15, 7852. [Google Scholar] [CrossRef]
- GradyVet. Introducing the GradyVet MilliWave. Available online: https://gradymedical.com/milliwave/ (accessed on 9 June 2025).
- Remedee Labs. Groundbreaking Non-Pharmaceutical and Clinically Validated Therapy for Fibromyalgia. Available online: https://remedeelabs.com/en/us/fibromyalgia/ (accessed on 9 June 2025).
- Guan, H.; Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng. 2021, 69, 1173–1185. [Google Scholar] [CrossRef]
- Abdullah, T.A.; Zahid, M.S.M.; Ali, W. A review of interpretable ML in healthcare: Taxonomy, applications, challenges, and future directions. Symmetry 2021, 13, 2439. [Google Scholar] [CrossRef]
- Shukla, S.; Rajkumar, S.; Sinha, A.; Esha, M.; Elango, K.; Sampath, V. Federated learning with differential privacy for breast cancer diagnosis enabling secure data sharing and model integrity. Sci. Rep. 2025, 15, 13061. [Google Scholar] [CrossRef]
- Islam, S.M.M. Radar-based remote physiological sensing: Progress, challenges, and opportunities. Front. Physiol. 2022, 13, 955208. [Google Scholar] [CrossRef] [PubMed]
Aspect | Theoretical Model | Machine Learning (ML) |
---|---|---|
Modeling Principle | Physics-driven (e.g., wave propagation, reflectance equations) | Data-driven, learns feature–biomarker mappings |
Interpretability | High—explicit and clinically traceable | Low to medium—requires explainability tools |
Data Requirement | Low—relies on priors and assumptions | High—needs large labeled datasets |
Adaptability | Limited—rigid to noise and variation | Flexible—handles subject and environmental variability |
Accuracy | Stable in idealized settings, sensitive to real-world complexity | Higher potential in diverse conditions if well trained |
Computational Demand | Low—suitable for embedded systems | Moderate to high—may require edge/cloud support |
Medical Acceptance | High—transparent and regulator-friendly | Medium—needs explainability and validation |
Use Case Preference | Simple vital signs under controlled setups | Complex tasks like gait, wound, or disease classification |
Reference | Extracted mmWave Feature | Mapping Method | Target Biomarker | Medical Use Case |
---|---|---|---|---|
A. Motion Features | ||||
Yang et al., 2017 [2] | Chest Micro-Variation | Theoretical | Respiration, Heart Rate | Sleep Monitoring |
Iyer et al., 2022 [35] | Heart Micro-Vibration | ML | Respiration, Heart Rate | Arrhythmia Monitoring |
Singh et al., 2023 [37] | Arterial Pulse Transit | ML | PWV, Blood Pressure | BP Monitoring |
Hao et al., 2024 [29] | Chest Vibration | ML | Respiration | Vital Signs Monitoring |
Geng et al., 2024 [38] | Artery Wall Vibration | Theoretical | PWV | Cardiovascular Monitoring |
Wang et al., 2024 [39] | Chest Wall Movement | ML | Respiration | Sleep Apnea Detection |
Chen et al., 2024 [40] | Chest Micro-Vibration | Theoretical | Heart Rate | Vital Signs Monitoring |
Zhao et al., 2024 [41] | Chest Micro-Vibration | ML | Heart Rate | Arrhythmia Detection |
Hao et al., 2025 [42] | Heart Vibration | Theoretical | Heart Rate | Vital Signs Monitoring |
Mercuri et al., 2022 [43] | Chest Micro-Vibration | Theoretical | Respiration, Heart Rate | Vital Signs Monitoring |
Jiang et al., 2020 [44] | Radar Point-Cloud + Micro-Doppler | ML | Human Gait | Gait Monitoring |
Zeng et al., 2022 [45] | Step Timing (Micro-Doppler) | Theoretical | Human Gait | Gait Monitoring |
Alanazi et al., 2022 [46] | Gait Micro-Movement | ML | Human Gait | Rehabilitation Monitoring |
Feng et al., 2023 [47] | Limb Movement | ML | Human Gait | Elderly Fall Detection |
Zhang et al., 2024 [48] | Stride/Gait Velocity | ML | Human Gait | Parkinson’s Assessment |
Hu et al., 2024 [49] | Joint Kinematics | ML | Human Gait | Fall Risk Assessment |
Gillani et al., 2023 [50] | Limb Tremor Vibration | Theoretical | Involuntary Motion | Parkinson’s Detection |
Smulders et al., 2013 [51] | Skin Water Content | Theoretical | Involuntary Motion | Tremor Monitoring |
B. Structure and Material Features | ||||
Bevacqua et al., 2021 [52] | Dielectric + Geometry | Theoretical | Tissue Property | Breast Cancer Imaging |
Di Meo et al., 2021 [23] | Dielectric + Geometry | Theoretical | Tissue Property | Breast Cancer Imaging |
Mirbeik et al., 2022 [5] | Dielectric Constant | ML | Tissue Property | Skin Cancer Diagnosis |
Owda et al., 2019 [53] | Emissivity | Theoretical | Tissue Property | Burn Wound Assessment |
Bagheri et al., 2024 [54] | Dielectric Constant | Theoretical | Respiration | Vital Signs Monitoring |
Chen et al., 2020 [13] | Thermal Scattering (Polymer Film) | ML | Body Temperature | Fever Screening |
He et al., 2023 [55] | Thermal Emission (Body) | Theoretical | Body Temperature | Fever Screening |
Liang et al., 2023 [10] | Blood Volume Change | ML | Blood Pressure | BP Monitoring |
Hu et al., 2024 [12] | Chest Micro-Vibration | ML | Blood Pressure | BP Monitoring |
Aspect | mmWave Sensing | Infrared Imaging | Optical Imaging |
---|---|---|---|
Penetration Capability | High—penetrates clothing, gauze | None—blocked by barriers | None—surface only |
Lighting Sensitivity | Not affected by ambient lighting | Low—robust to illumination | High—requires consistent lighting |
Privacy | High—non-visual, anonymous | Medium—thermal silhouettes possible | Low—captures identifiable appearance |
Spatial Resolution | 3–10 mm | 1–4 mm | <0.1 mm |
Hardware Cost | $100–500 | $200–800 | $10–50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, C.; Cheng, Y.; Li, Z.; Xu, C.; Huang, C.; Zhan, Y.; Bo, W.; Xia, J.; Xu, W. A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications. Sensors 2025, 25, 3706. https://doi.org/10.3390/s25123706
Zhang X, Liu C, Cheng Y, Li Z, Xu C, Huang C, Zhan Y, Bo W, Xia J, Xu W. A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications. Sensors. 2025; 25(12):3706. https://doi.org/10.3390/s25123706
Chicago/Turabian StyleZhang, Xiaoyu, Chuhui Liu, Yanda Cheng, Zhengxiong Li, Chenhan Xu, Chuqin Huang, Ye Zhan, Wei Bo, Jun Xia, and Wenyao Xu. 2025. "A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications" Sensors 25, no. 12: 3706. https://doi.org/10.3390/s25123706
APA StyleZhang, X., Liu, C., Cheng, Y., Li, Z., Xu, C., Huang, C., Zhan, Y., Bo, W., Xia, J., & Xu, W. (2025). A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications. Sensors, 25(12), 3706. https://doi.org/10.3390/s25123706