Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Performance of the TAG-Enabled System
3.2. QPI with the TAG-Enabled System
3.3. Proof of Principle: Tracking of a Paramecium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, Q.; Qu, W.; Asundi, A. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt. Express 2013, 21, 24060–24075. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Katkus, T.; Linklater, D.P.; Ivanova, E.P.; Juodkazis, S. Lensless three-dimensional quantitative phase imaging using phase retrieval algorithm. J. Imaging 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, Y.-N.; Huang, H.; Yan, K.; Jiang, Z.; He, X.; Kong, Y.; Liu, C.; Liu, F.; Xue, L.; et al. PhaseRMiC: Phase real-time microscope camera for live cell imaging. Biomed. Opt. Express 2021, 12, 5261–5271. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yu, W.; Meng, X.; Sun, A.; Xue, L.; Liu, C.; Wang, S. Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view. Opt. Lett. 2016, 41, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Picazo-Bueno, J.A.; Micó, V. Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing. Opt. Express 2021, 29, 39904. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Tian, X.; He, X.; Song, X.; Xue, L.; Liu, C.; Wang, S. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method. Appl. Phys. Lett. 2016, 109, 071112. [Google Scholar] [CrossRef]
- Hai, N.; Kumar, R.; Rosen, J. Single-shot TIE using polarization multiplexing (STIEP) for quantitative phase imaging. Opt. Lasers Eng. 2022, 151, 106912. [Google Scholar] [CrossRef]
- Yoneda, N.; Onishi, A.; Saita, Y.; Komuro, K.; Nomura, T. Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography. Opt. Express 2021, 29, 4783–4801. [Google Scholar] [CrossRef] [PubMed]
- Waller, L.; Yang, S.Y.; Barbastathis, G.; Luo, Y. Transport of intensity phase imaging in a volume holographic microscope. Opt. Lett. 2010, 35, 2961–2963. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.S.; Waller, L.; Barbastathis, G.; Sheppard, C.J.R. Phase from chromatic aberrations. Opt. Express 2010, 18, 22817–22825. [Google Scholar] [CrossRef] [PubMed]
- Duocastella, M.; Surdo, S.; Zunino, A.; Diaspro, A.; Saggau, P. Acousto-optic systems for advanced microscopy. J. Phys. Photonics 2021, 3, 012004. [Google Scholar] [CrossRef]
- Mermillod-Blondin, A.; McLeod, E.; Arnold, C.B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt. Lett. 2008, 33, 2146–2148. [Google Scholar] [CrossRef] [PubMed]
- Alexandropoulos, C.; Duocastella, M. Video-rate quantitative phase imaging with dynamic acousto-optic defocusing. Opt. Lasers Eng. 2023, 169, 107692. [Google Scholar] [CrossRef]
- Duocastella, M.; Sun, B.; Arnold, C.B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. J. Biomed. Opt. 2012, 17, 050505. [Google Scholar] [CrossRef] [PubMed]
- Duocastella, M.; Theriault, C.; Arnold, C.B. Three-dimensional particle tracking via tunable color-encoded multiplexing. Opt. Lett. 2016, 41, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Li, A.-C.; Vyas, S.; Huang, Y.-Y.; Yeh, J.A.; Luo, Y. Isotropic quantitative differential phase contrast microscopy using radially asymmetric color-encoded pupil. J. Phys. Photonics 2021, 3, 035001. [Google Scholar] [CrossRef]
- Lee, W.; Choi, J.H.; Ryu, S.; Jung, D.; Song, J.; Lee, J.S.; Joo, C. Color-coded LED microscopy for quantitative phase imaging: Implementation.; application to sperm motility analysis. Methods 2018, 136, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Jung, D.; Ryu, S.; Joo, C. Single-exposure quantitative phase imaging in color-coded LED microscopy. Opt. Express 2017, 25, 8398–8411. [Google Scholar] [CrossRef] [PubMed]
- Koho, S.; Tortarolo, G.; Castello, M.; Deguchi, T.; Diaspro, A.; Vicidomini, G. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 2019, 10, 3103. [Google Scholar] [CrossRef] [PubMed]
- Ramoino, P.; Diaspro, A.; Fato, M.; Usai, C. Imaging of Endocytosis in Paramecium by Confocal Microscopy. Molecular Regulation of Endocytosis; Ceresa, B., Ed.; InTech: Brisbane, Australia, 2012; pp. 123–152. [Google Scholar]
- Duocastella, M.; Sancataldo, G.; Saggau, P.; Ramoino, P.; Bianchini, P.; Diaspro, A. Fast Inertia-Free Volumetric Light-Sheet Microscope. ACS Photonics 2017, 4, 1797–1804. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Liu, G.; Ren, H.; Vinu, R.V.; Chen, Z.; Pu, J. Label-free single-shot imaging with on-axis phase-shifting holographic reflectance quantitative phase microscopy. J. Biophotonics 2022, 15, e202100400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Y.; Wang, Y.; Wen, K.; Zheng, J.; Liu, L.; Gao, P. Polarization grating based on diffraction phase microscopy for quantitative phase imaging of paramecia. Opt. Express 2020, 28, 29775–29787. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Wang, Y.; Li, D. Quantitative real-time phase microscopy for extended depth-of-field imaging based on the 3D single-shot differential phase contrast (ssDPC) imaging method. Opt. Express 2024, 32, 2081–2096. [Google Scholar] [CrossRef] [PubMed]
- Ershov, D.; Phan, M.S.; Pylvänäinen, J.W.; Rigaud, S.U.; Le Blanc, L.; Charles-Orszag, A.; Conway, J.R.W.; Laine, R.F.; Roy, N.H.; Bonazzi, D.; et al. TrackMate 7: Integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 2022, 19, 829–832. [Google Scholar] [CrossRef] [PubMed]
Measured Camera Color (Raw) | Measured Camera Color (Correction) | ||||||
---|---|---|---|---|---|---|---|
Red (%) | Green (%) | Blue (%) | Red (%) | Green (%) | Blue (%) | ||
Color LED | Red | 68.5 | 28.3 | 3.3 | 99.7 | 0.3 | 0.0 |
Green | 5.3 | 69.3 | 25.4 | 1.3 | 97.8 | 0.9 | |
Blue | 3.4 | 19.2 | 77.5 | 1.0 | 0.7 | 98.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandropoulos, C.; Rodríguez-Suñé, L.; Duocastella, M. Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control. Sensors 2025, 25, 4503. https://doi.org/10.3390/s25144503
Alexandropoulos C, Rodríguez-Suñé L, Duocastella M. Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control. Sensors. 2025; 25(14):4503. https://doi.org/10.3390/s25144503
Chicago/Turabian StyleAlexandropoulos, Christos, Laura Rodríguez-Suñé, and Martí Duocastella. 2025. "Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control" Sensors 25, no. 14: 4503. https://doi.org/10.3390/s25144503
APA StyleAlexandropoulos, C., Rodríguez-Suñé, L., & Duocastella, M. (2025). Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control. Sensors, 25(14), 4503. https://doi.org/10.3390/s25144503