A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction
Abstract
1. Introduction
2. Methodology
2.1. Adaptive Exposure Time Selection Method
- (1)
- Set the maximum number of acceptable clustering clusters , the maximum number of iterations , the minimum exposure time , the maximum exposure time , and the improvement threshold .
- (2)
- An initial cluster center is randomly selected for each cluster, the sample set is assigned to the nearest neighboring cluster according to the minimum distance principle, and the cluster centers are updated using the sample means for each cluster center.
- (3)
- Repeat step (2) until the clustering center no longer changes or the maximum number of iterations is reached.
- (4)
- Calculate and save the sum of the current distances from each intra-cluster point to the cluster center (when the number of clusters k > 2), and calculate the current degree of improvement . If and , add 1 to the current number of clusters k and repeat step (2); otherwise, output the final number of clusters k and the minimum value of each intra-cluster point .
2.2. Phase Order Sharing Method
3. Experiments and Validation
3.1. System Setup
3.2. Phase Order Sharing Experiment
3.3. Experiments on 3D Measurement of Standard Workpieces
- (1)
- Using the phase-shifting method to calculate the wrapped phase at a single exposure time and the step-by-step unfolding method to obtain the absolute phase, as a control group under no exposure fusion, using 4 frequencies and 6 steps for a total of 24 images; this method is denoted as SE (single exposure).
- (2)
- Using eight groups of equal-step exposure times (6 ms, 12 ms, 18 ms, …, 48 ms) and multiple-exposure fusion to obtain phase-shifting images and using multi-frequency step-by-step unfolding to obtain the absolute phase belonging to a common structured-light camera on the market to measure the high dynamic range of the processing method, with 24 images per exposure group; this method is denoted as ME (multi-exposure).
- (3)
- Using two, four, and eight groups of equal-step exposure time and multiple-exposure fusion to obtain phase-shifting images and using complementary Gray code expansion to obtain the absolute phase, with a total of five projected Gray code images, one each for high-intensity uniform grey-scale images and when not projecting images, and six images for each group of phase-shifting images; this method is denoted as GC_i (Gray code, i is the corresponding number of projection groups).
- (4)
- The method proposed in this section, which determines the number of exposure groups and the corresponding time by using adaptive exposure fusion method and solves the phase values by the complementary Gray code method based on phase order sharing; there are five projected Gray code images in total, one high uniform grey scale image and one low uniform grey scale image are collected with and without a projected image (surface reflection model is calculated for pre-projection), and there are six phase-shifting images in each group; this method is denoted as Ours.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimizu, Y.; Chen, L.-C.; Kim, D.W.; Chen, X.; Li, X.; Matsukuma, H. An insight into optical metrology in manufacturing. Meas. Sci. Technol. 2021, 32, 042003. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.-W.; Bosse, H.; Haitjema, H.; Chen, Y.; Lu, X.; Knapp, W.; Weckenmann, A.; Estler, W.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Gao, W.; Haitjema, H.; Fang, F.; Leach, R.; Cheung, C.; Savio, E.; Linares, J.-M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef]
- Xu, B.; Jia, Z.; Li, X.; Chen, Y.-L.; Shimizu, Y.; Ito, S.; Gao, W. Surface form metrology of micro-optics. In Proceedings of the International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), Singapore, 9–12 April 2013; p. 876902. [Google Scholar]
- Li, Y.; Li, Z.; Chen, W.; Zhang, C.; Wang, H.; Wang, X.; Gui, W.; Gao, W.; Liang, X.; Li, X. Reliable 3D Reconstruction with Single-Shot Digital Grating and Physical Model-Supervised Machine Learning. IEEE Trans. Instrum. Meas. 2025, 74, 5505413. [Google Scholar]
- Lei, M.; Fan, J.; Shao, L.; Song, H.; Xiao, D.; Ai, D.; Fu, T.; Lin, Y.; Gu, Y.; Yang, J. Double-Shot 3D Shape Measurement with a Dual-Branch Network for Structured Light Projection Profilometry. IEEE Trans. Circuits Syst. Video Technol. 2024, 35, 3893–3906. [Google Scholar] [CrossRef]
- Ye, X.C.; Fan, X.; Zhang, M.L.; Xu, R.; Zhong, W. Unsupervised Monocular Depth Estimation via Recursive Stereo Distillation. IEEE Trans. Image Process 2021, 30, 4492–4504. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, C.; Zhang, Z.; Li, X. Review of MEMS vibration-mirror-based 3D reconstruction of structured light. Opt. Precis. Eng. 2025, 33, 1065–1090. [Google Scholar] [CrossRef]
- Chen, R.; Li, Y.; Xue, G.; Tao, Y.; Li, X. Laser triangulation measurement system with Scheimpflug calibration based on the Monte Carlo optimization strategy. Opt. Express 2022, 30, 25290–25307. [Google Scholar] [CrossRef]
- Li, J.X.; Zhou, Q.; Li, X.H.; Chen, R.M.; Ni, K. An Improved Low-Noise Processing Methodology Combined with PCL for Industry Inspection Based ON Laser Line Scanner. Sensors 2019, 19, 3398. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Z.; Fu, S.; Zhao, H.; Ni, Y.; Gao, N.; Meng, Z.; Yang, Z.; Zhang, G.; Yin, W. Recent Progress of Full-Field Three-Dimensional Shape Measurement Based on Phase Information. Nanomanufacturing Metrol. 2024, 7, 9. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Improving Generalization in Fringe Projection Profilometry Networks through Physics-Informed Data Augmentation. In Proceedings of the 2025 4th International Symposium on Computer Applications and Information Technology (ISCAIT), Xi’an, China, 21–23 March 2025; pp. 420–423. [Google Scholar]
- Gao, F.; Xu, Y.; Li, Y.; Zhong, W.; Yu, Y.; Li, D.; Jiang, X. In-Situ Form Metrology of Structured Composite Surfaces Using Hybrid Structured-Light Measurement with a Novel Calibration Method. Nanomanufacturing Metrol. 2024, 7, 23. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.J.; Huang, L.; Tao, T.Y.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.L.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Su, X.Y.; Xiang, L.Q.; Sun, X.Z. 3-D shape measurement based on complementary Gray-code light. Opt. Lasers Eng. 2012, 50, 574–579. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.; Wang, X.; Zhou, Q.; Ni, K.; Li, X. Three-Probe Error Separation with Chromatic Confocal Sensors for Roundness Measurement. Nanomanufacturing Metrol. 2021, 4, 247–255. [Google Scholar] [CrossRef]
- Lei, F.; Han, M.; Jiang, H.; Wang, X.; Li, X. A phase-angle inspired calibration strategy based on MEMS projector for 3D reconstruction with markedly reduced calibration images and parameters. Opt. Lasers Eng. 2024, 176, 108078. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Liang, X.; Huang, H.; Qian, X.; Feng, F.; Zhang, C.; Wang, X.; Gui, W.; Li, X. Global phase accuracy enhancement of structured light system calibration and 3D reconstruction by overcoming inevitable unsatisfactory intensity modulation. Measurement 2024, 236, 114952. [Google Scholar] [CrossRef]
- Han, M.; Xing, Y.B.; Wang, X.H.; Li, X.H. Projection superimposition for the generation of high-resolution digital grating. Opt. Lett. 2024, 49, 4473–4476. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liang, Y.; Lin, Y.-S. MEMS-based meta-emitter with actively tunable radiation power characteristic. Discov. Nano 2024, 19, 133. [Google Scholar] [CrossRef]
- Han, M.; Lei, F.; Shi, W.; Lu, S.; Li, X. Uniaxial MEMS-based 3D reconstruction using pixel refinement. Opt. Express 2023, 31, 536–554. [Google Scholar] [CrossRef]
- Song, J.; Liu, K.; Sowmya, A.; Sun, C. Super-resolution phase retrieval network for single-pattern structured light 3D imaging. IEEE Trans. Image Process. 2022, 32, 537–549. [Google Scholar] [CrossRef]
- Feng, S.J.; Zuo, C.; Zhang, L.; Tao, T.Y.; Hu, Y.; Yin, W.; Qian, J.M.; Chen, Q. Calibration of fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2021, 143, 106622. [Google Scholar] [CrossRef]
- Lei, F.X.; Ma, R.J.; Li, X.H. Use of Phase-Angle Model for Full-Field 3D Reconstruction under Efficient Local Calibration. Sensors 2024, 24, 2581. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Da, F.; Li, W. Calibration for camera–projector pairs using spheres. IEEE Trans. Image Process. 2020, 30, 783–793. [Google Scholar] [CrossRef]
- Zappa, E.; Busca, G. Static and dynamic features of Fourier transform profilometry: A review. Opt. Lasers Eng. 2012, 50, 1140–1151. [Google Scholar] [CrossRef]
- Zuo, C.; Qian, J.M.; Feng, S.J.; Yin, W.; Li, Y.X.; Fan, P.F.; Han, J.; Qian, K.M.; Chen, Q. Deep learning in optical metrology: A review. Light-Sci. Appl. 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Zhang, C.; Han, M.; Lei, F.; Liang, X.; Wang, X.; Gui, W.; Li, X. Deep Learning-Driven One-Shot Dual-View 3-D Reconstruction for Dual-Projector System. IEEE Trans. Instrum. Meas. 2024, 73, 5021314. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.Y.; Huang, Z.Y.; Li, Y.M.; Zhang, C.B.; Qian, X.; Wang, X.H.; Gui, W.H.; Liang, X.J.; Li, X.H. A High-Accuracy and Reliable End-to-End Phase Calculation Network and Its Demonstration in High Dynamic Range 3D Reconstruction. Nanomanufacturing Metrol. 2025, 8, 5. [Google Scholar] [CrossRef]
- Wei, L.; Xiangchao, Z.; Yunuo, C.; Ting, C.; Peide, Y.; Min, X.; Xiangqian, J. Deterministic form-position deflectometric measurement of monolithic multi-freeform optical structures via Bayesian multisensor fusion. Light Adv. Manuf. 2025, 6, 29. [Google Scholar] [CrossRef]
- Zhang, P.; Zhong, K.; Zhongwei, L.; Xiaobo, J.; Bin, L.; Congjun, W.; Yusheng, S. High dynamic range 3D measurement based on structured light: A review. J. Adv. Manuf. Sci. Technol. 2021, 1, 2021004. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yu, T.C.; Liang, D.; He, Z.X. A review on 3D measurement of highly reflective objects using structured light projection. Int. J. Adv. Manuf. Technol. 2024, 132, 4205–4222. [Google Scholar] [CrossRef]
- Feng, S.J.; Zhang, Y.Z.; Chen, Q.; Zuo, C.; Li, R.B.; Shen, G.C. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique. Opt. Lasers Eng. 2014, 59, 56–71. [Google Scholar] [CrossRef]
- Rao, L.; Da, F.P. High dynamic range 3D shape determination based on automatic exposure selection. J. Vis. Commun. Image Represent. 2018, 50, 217–226. [Google Scholar] [CrossRef]
- Ekstrand, L.; Zhang, S. Autoexposure for three-dimensional shape measurement using a digital-light-processing projector. Opt. Eng. 2011, 50, 123603. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Li, Z.; Zhang, C.; Wang, X.; Gui, W.; Gao, W.; Liang, X.; Li, X. SL3D-BF: A Real-World Structured Light 3D Dataset with Background-to-Foreground Enhancement. IEEE Trans. Circuits Syst. Video Technol. 2025. [Google Scholar] [CrossRef]
- Zhong, K.; Li, Z.; Zhou, X.; Li, Y.; Shi, Y.; Wang, C. Enhanced phase measurement profilometry for industrial 3D inspection automation. Int. J. Adv. Manuf. Technol. 2015, 76, 1563–1574. [Google Scholar] [CrossRef]
- Zhang, S. Rapid and automatic optimal exposure control for digital fringe projection technique. Opt. Lasers Eng. 2020, 128, 106029. [Google Scholar] [CrossRef]
- Lin, H.; Gao, J.; Mei, Q.; He, Y.; Liu, J.; Wang, X. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement. Opt. Express 2016, 24, 7703–7718. [Google Scholar] [CrossRef]
- Jiang, C.F.; Bell, T.; Zhang, S. High dynamic range real-time 3D shape measurement. Opt. Express 2016, 24, 7337–7346. [Google Scholar] [CrossRef] [PubMed]
- Shim, I.; Lee, J.-Y.; Kweon, I.S. Auto-adjusting Camera Exposure for Outdoor Robotics using Gradient Information. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 1011–1017. [Google Scholar]
- Huimin, L.; Hui, Z.; Shaowu, Y.; Zhiqiang, Z. Camera Parameters Auto-Adjusting Technique for Robust Robot Vision. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 1518–1523. [Google Scholar]
- Liu, X.; Chen, W.; Madhusudanan, H.; Ge, J.; Ru, C.; Sun, Y. Optical Measurement of Highly Reflective Surfaces From a Single Exposure. IEEE Trans. Ind. Inform. 2021, 17, 1882–1891. [Google Scholar] [CrossRef]
- Li, J.L.; Hassebrook, L.G.; Guan, C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2003, 20, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Salahieh, B.; Chen, Z.Y.; Rodriguez, J.J.; Liang, R.G. Multi-polarization fringe projection imaging for high dynamic range objects. Opt. Express 2014, 22, 10064–10071. [Google Scholar] [CrossRef]
- Pan, B.; Kemao, Q.; Huang, L.; Asundil, A. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt. Lett. 2009, 34, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zuo, C.; Guo, W.; Tao, T.; Zhang, Q. High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light. Opt. Express 2019, 27, 1283–1297. [Google Scholar] [CrossRef]
- Han, M.; Shi, W.J.; Lu, S.H.; Lei, F.X.; Li, Y.M.; Wang, X.H.; Li, X.H. Internal-External Layered Phase Shifting for Phase Retrieval. IEEE Trans. Instrum. Meas. 2024, 73, 4501013. [Google Scholar] [CrossRef]
- Han, M.; Jiang, H.; Lei, F.X.; Xing, Y.B.; Wang, X.H.; Li, X.H. Modeling window smoothing effect hidden in fringe projection profilometry. Measurement 2025, 242, 115852. [Google Scholar] [CrossRef]
- Zhang, S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt. Lasers Eng. 2021, 143, 106637. [Google Scholar] [CrossRef]
- Xue, R.; Hooshmand, H.; Isa, M.; Piano, S.; Leach, R.K. Applying machine learning to optical metrology: A review. Meas. Sci. Technol. 2024, 36, 012002. [Google Scholar] [CrossRef]
- Liu, H.; Yan, N.; Shao, B.; Yuan, S.; Zhang, X. Deep learning in fringe projection: A review. Neurocomputing 2024, 581, 127493. [Google Scholar] [CrossRef]
- Chen, B.; Li, Q.; Ma, R.; Qian, X.; Wang, X.; Li, X. Towards the generalization of time series classification: A feature-level style transfer and multi-source transfer learning perspective. Knowl. Based Syst. 2024, 299, 112057. [Google Scholar] [CrossRef]
- Li, C.; Pan, X.; Zhu, P.; Zhu, S.; Liao, C.; Tian, H.; Qian, X.; Li, X.; Wang, X.; Li, X. Style Adaptation module: Enhancing detector robustness to inter-manufacturer variability in surface defect detection. Comput. Ind. 2024, 157, 104084. [Google Scholar] [CrossRef]
- Li, C.; Yan, H.; Qian, X.; Zhu, S.; Zhu, P.; Liao, C.; Tian, H.; Li, X.; Wang, X.; Li, X. A domain adaptation YOLOv5 model for industrial defect inspection. Measurement 2023, 213, 112725. [Google Scholar] [CrossRef]
Method | Projected Images Ntotal | Total Exposure Time Ttotal/ms | Result Hi/mm | Standard Deviation std/mm |
---|---|---|---|---|
SE | 24 | 240 | 5.187 | 0.179 |
ME | 192 | 5184 | 5.064 | 0.110 |
GC_8 | 55 | 1380 | 5.032 | 0.088 |
GC_4 | 31 | 660 | 5.053 | 0.094 |
GC_2 | 19 | 336 | 5.071 | 0.152 |
Ours | 20 | 381.6 | 5.053 | 0.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ma, R.; Duan, S. A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction. Sensors 2025, 25, 4786. https://doi.org/10.3390/s25154786
Li Z, Ma R, Duan S. A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction. Sensors. 2025; 25(15):4786. https://doi.org/10.3390/s25154786
Chicago/Turabian StyleLi, Zhuang, Rui Ma, and Shuyu Duan. 2025. "A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction" Sensors 25, no. 15: 4786. https://doi.org/10.3390/s25154786
APA StyleLi, Z., Ma, R., & Duan, S. (2025). A Clustered Adaptive Exposure Time Selection Methodology for HDR Structured Light 3D Reconstruction. Sensors, 25(15), 4786. https://doi.org/10.3390/s25154786