Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of PDMS/PEG Composites
2.3. Laser-Induced Graphene Production and Laser Parameter Optimization Strategy
2.4. LIG Characterization
2.5. LIG-Based Limb Motion Sensor Fabrication
3. Results and Discussion
3.1. Polymer Synthesis
3.2. Electrical Characterization of LIG on PDMS/PEG
3.3. Raman Spectroscopy
3.4. FTIR Spectroscopy
3.5. SEM
3.6. XRD
3.7. Swelling Behavior
3.8. Mechanical Characteristics and Environmental Stability
3.9. Water Contact Angle and Water Absorption
3.10. XPS
3.11. TEM
3.12. TG Results in Nitrogen
3.13. Limb Motion Sensor
Gauge Factor; Strain Range | Cycles | Response Time (ms) | References | |
---|---|---|---|---|
LIG on PDMS/PEG | 347; ε = 0–10% | 450 | 200 | this work |
LIG on pure PDMS | 41; ε = 30–46% | 12,000 | 250 | [82] |
LIG on pure PDMS | 111; ε = 0–1.6% | 1500 | 1040 | [25] |
LIG on pure PDMS | 43; ε = 45–48% | 5000 | 300 | [83] |
LIG on pure PDMS | 15.8; ε = 10–20% | 2000 | 160 | [20] |
LIG on pure PDMS | 1242 (n.l.); ε = <25% | 12,000 | 250 | [84] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. A soft and stretchable electronics using laser-induced graphene on polyimide/PDMS composite substrate. npj Flex. Electron. 2022, 6, 26. [Google Scholar] [CrossRef]
- Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865. [Google Scholar] [CrossRef]
- Vićentić, T.; Rašljić Rafajilović, M.; Ilić, S.D.; Koteska, B.; Madevska Bogdanova, A.; Pašti, I.A.; Lehocki, F.; Spasenović, M. Laser-Induced Graphene for Heartbeat Monitoring with HeartPy Analysis. Sensors 2022, 22, 6326. [Google Scholar] [CrossRef]
- Rodgers, M.M.; Pai, V.M.; Conroy, R.S. Recent Advances in Wearable Sensors for Health Monitoring. IEEE Sens. J. 2015, 15, 3119–3126. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv. Mater. Technol. 2020, 5, 2000630. [Google Scholar] [CrossRef]
- Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B Chem. 2020, 311, 127866. [Google Scholar] [CrossRef]
- Beduk, T.; Ait Lahcen, A.; Tashkandi, N.; Salama, K.N. One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor. Sens. Actuators B Chem. 2020, 314, 128026. [Google Scholar] [CrossRef]
- Burke, M.; Larrigy, C.; Vaughan, E.; Paterakis, G.; Sygellou, L.; Quinn, A.J.; Herzog, G.G.; Galiotis, C.; Iacopino, D. Fabrication and electrochemical properties of three-dimensional (3D) porous graphitic and graphenelike electrodes obtained by low-cost direct laser writing methods. ACS Omega 2020, 5, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ping, J.; Ying, Y. Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. Sci. Total Environ. 2020, 714, 136687. [Google Scholar] [CrossRef]
- Groo, L.; Nasser, J.; Inman, D.; Sodano, H. Fatigue damage tracking and life prediction of fiberglass composites using a laser induced graphene interlayer. Compos. B Eng. 2021, 218, 108935. [Google Scholar] [CrossRef]
- Hong, S.; Kim, J.; Jung, S.; Lee, J.; Shin, B.S. Surface morphological growth characteristics of laser-induced graphene with UV pulsed laser and sensor applications. ACS Matter. Lett. 2023, 5, 1261–1270. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, J.; Zhang, D.; Sheng, B. Laser-Induced Graphene Electrodes on Poly (ether–ether–ketone)/PDMS Composite Films for Flexible Strain and Humidity Sensors. ACS Appl. Nano Mater. 2023, 6, 17802–17813. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Zhang, J.; Tour, J.M.; Arnusch, C.J. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Appl. Nano Mater. 2018, 12, 289–297. [Google Scholar] [CrossRef]
- Peng, Z.; Ye, R.; Mann, J.A.; Zakhidov, D.; Li, Y.; Smalley, P.R.; Lin, J.; Tour, J.M. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Appl. Nano Mater. 2015, 9, 5868–5875. [Google Scholar] [CrossRef]
- Xing, X.; Zou, Y.; Zhong, M.; Li, S.; Fan, H.; Lei, X.; Yin, J.; Shen, J.; Liu, X.; Xu, M. A Flexible wearable sensor based on laser-induced graphene for high-precision fine motion capture for pilots. Sensors 2024, 24, 1349. [Google Scholar] [CrossRef]
- Yen, Y.-H.; Hsu, C.-S.; Lei, Z.-Y.; Wang, H.-J.; Su, C.-Y.; Dai, C.-L.; Tsai, Y.-C. Laser-induced graphene stretchable strain sensor with vertical and parallel patterns. Micromachines 2022, 13, 1220. [Google Scholar] [CrossRef]
- Deng, B.; Wang, Z.; Liu, W.; Hu, B. Multifunctional motion sensing enabled by laser-induced graphene. Materials 2023, 16, 6363. [Google Scholar] [CrossRef]
- Luo, S.; Hoang, P.T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531. [Google Scholar] [CrossRef]
- Barja, A.M.; Ryu, Y.K.; Tarancón, S.; Tejado, E.; Hamada, A.; Velasco, A.; Martinez, J. Laser-Induced Graphene Strain Sensors for Body Movement Monitoring. ACS Omega 2024, 9, 38359–38370. [Google Scholar] [CrossRef] [PubMed]
- Mamleyev, E.R.; Heissler, S.; Nefedov, A.; Weidler, P.G.; Nordin, N.; Kudryashov, V.V.; Länge, K.; MacKinnon, N.; Sharma, S. Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 2019, 3, 2. [Google Scholar] [CrossRef]
- Chen, Y.; Long, J.; Zhou, S.; Shi, D.; Huang, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C.P. UV laser-induced polyimide-to-graphene conversion: Modeling, fabrication, and application. Small Methods 2019, 3, 1900208. [Google Scholar] [CrossRef]
- Le, T.S.D.; Phan, H.P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.W.; et al. Recent advances in laser-induced graphene: Mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Ma, Z.; Khoo, B.L. Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare. Soft Sci. 2024, 4, 26. [Google Scholar] [CrossRef]
- Jiang, X.; Sui, X.; Lu, Y.; Yan, Y.; Zhou, C.; Li, L.; Ren, Q.; Chai, X. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J. Neuroeng. Rehabil. 2013, 10, 48. [Google Scholar] [CrossRef]
- Stieglitz, T.; Beutel, H.R.; Schuettler, M.; Meyer, J.U. Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces. Biomed. Microdevices 2000, 2, 283–294. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lai, H.-Y.; Lin, S.-H.; Cho, C.-W.; Chao, W.-H.; Liao, C.-H.; Tsang, S.; Chen, Y.-F.; Lin, S.-Y. Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain. J. Neurosci. Methods 2009, 182, 6–16. [Google Scholar] [CrossRef]
- Groo, L.; Nasser, J.; Inman, D.J.; Sodano, H.A. Transfer printed laser induced graphene strain gauges for embedded sensing in fiberglass composites. Compos. B Eng. 2021, 219, 108932. [Google Scholar] [CrossRef]
- Yazdi, A.Z.; Navas, I.O.; Abouelmagd, A.; Sundararaj, U. Direct Creation of Highly Conductive Laser-Induced Graphene Nanocomposites from Polymer Blends. Macromol. Rapid Commun. 2017, 38, 1700176. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhu, J.; Gan, B.; Zhao, S.; Wang, H.; Li, C.; Wang, J. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. Small 2018, 14, 1702249. [Google Scholar] [CrossRef]
- Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene Formation on Wood. Adv. Mater. 2017, 29, 1702211. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Appl. Nano Mater. 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Mahmood, F.; Zhang, H.; Lin, J.; Wan, C. Laser-induced graphene derived from kraft lignin for flexible supercapacitors. ACS Omega 2020, 5, 14611–14618. [Google Scholar] [CrossRef]
- Vićentić, T.; Greco, I.; Iorio, C.S.; Mišković, V.; Bajuk-Bogdanović, D.; Pašti, I.A.; Radulović, K.; Klenk, S.; Stimpel-Lindner, T.; Duesberg, G.S.; et al. Laser-induced graphene on cross-linked sodium alginate. Nanotechnology 2023, 35, 115103. [Google Scholar] [CrossRef]
- Correia, R.; Deuermeier, J.; Correia, M.R.; Vaz Pinto, J.; Coelho, J.; Fortunato, E.; Martins, R. Biocompatible parylene-C laser-induced graphene electrodes for microsupercapacitor applications. ACS Appl. Mater. Interfaces 2022, 14, 46427–46438. [Google Scholar] [CrossRef] [PubMed]
- Zaccagnini, P.; Ballin, C.; Fontana, M.; Parmeggiani, M.; Bianco, S.; Stassi, S.; Pedico, A.; Ferrero, S.; Lamberti, A. Laser-induced graphenization of PDMS as flexible electrode for microsupercapacitors. Adv. Mater. Interfaces 2021, 8, 2101046. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, J.K.; Jeong, O.C. Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron. Eng. 2011, 88, 1982–1985. [Google Scholar] [CrossRef]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017. [Google Scholar] [CrossRef]
- Cai, D.K.; Neyer, A.; Kuckuk, R.; Heise, H.M. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt. Mater. 2008, 30, 1157–1161. [Google Scholar] [CrossRef]
- Pinho, D.; Muñoz-Sánchez, B.N.; Anes, C.F.; Vega, E.J.; Lima, R. Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mech. Res. Commun. 2019, 100, 103399. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef]
- Rao, H.; Zhang, Z.; Liu, F. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials. J. Mech. Behav. Biomed. Mater. 2013, 20, 347–353. [Google Scholar] [CrossRef]
- Lötters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145. [Google Scholar] [CrossRef]
- Heo, B.; Fiola, M.; Yang, J.H.; Koh, A. A low-cost, composite collagen-PDMS material for extended fluid retention in the skin-interfaced microfluidic devices. Colloids Interface Sci. Commun. 2020, 38, 100301. [Google Scholar] [CrossRef]
- Bento, D.; Lopes, S.; Maia, I.; Lima, R.; Miranda, J.M. Bubbles moving in blood flow in a microchannel network: The effect on the local hematocrit. Micromachines 2020, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef]
- Manjencic, D.; Seitsonen, J.; Radusin, T.; Vukic, N.; Budinski-Simendic, J.; Cakic, J.; Ristic, I. Influence of nanofillers on the properties of siloxane elastomers. Hem. Ind. 2020, 74, 133–146. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymers 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Parmeggiani, M.; Zaccagnini, P.; Stassi, S.; Fontana, M.; Bianco, S.; Nicosia, C.; Pirri, C.F.; Lamberti, A. PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 33221–33230. [Google Scholar] [CrossRef] [PubMed]
- Pergal, M.V.; Rašljić Rafajilović, M.; Vićentić, T.; Pašti, I.A.; Ostojić, S.; Bajuk-Bogdanović, D.; Spasenović, M. Laser-Induced Graphene on Novel Crosslinked Poly (dimethylsiloxane)/Triton X-100 Composites for Improving Mechanical, Electrical and Hydrophobic Properties. Polymers 2024, 16, 3157. [Google Scholar] [CrossRef]
- D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Spear, S.K.; Huddleston, J.G.; Rogers, R.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005, 7, 64. [Google Scholar] [CrossRef]
- Harris, J.M. Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. Polyethylene glycol–coated biocompatible surfaces. J. Biomed. Mater. Res. Off. J. Soc. Biomater. 2000, 51, 343–351. [Google Scholar] [CrossRef]
- Totten, G.; Clinton, N. Poly (ethylene glycol) and derivatives as phase transfer catalysts. J. Macromol. Sci. Polym. Rev. 1998, 38, 77–142. [Google Scholar] [CrossRef]
- Mair, D.B.; Williams, M.A.C.; Chen, J.F.; Goldstein, A.; Wu, A.; Lee, P.H.; Sniadecki, N.J.; Kim, D.-H. PDMS–PEG block copolymer and pretreatment for arresting drug absorption in microphysiological devices. ACS Appl. 2022, 14, 38541–38549. [Google Scholar] [CrossRef] [PubMed]
- Reijerkerk, S.R.; Knoef, M.H.; Nijmeijer, K.; Wessling, M. Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. J. Membr. Sci. 2010, 352, 126–135. [Google Scholar] [CrossRef]
- Pinheiro, T.; Morais, M.; Silvestre, S.; Carlos, E.; Coelho, J.; Almeida, H.V.; Barquinha, P.; Fortunato, E.; Martins, R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. Adv. Mater. 2024, 36, 2402014. [Google Scholar] [CrossRef]
- C Claro, P.I.; Pinheiro, T.; Silvestre, S.L.; Marques, A.C.; Coelho, J.; Marconcini, J.M.; Fortunato, E.; C Mattoso, L.H.; Martins, R. Sustainable carbon sources for green laser-induced graphene: A perspective on fundamental principles, applications, and challenges. Appl. Phys. Rev. 2022, 9, 041305. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Lei, Y.; Alshareef, A.H.; Zhao, W.; Inal, S. Laser-Scribed Graphene Electrodes Derived from Lignin for Biochemical Sensing. ACS Appl. Nano Mater. 2019, 3, 1166–1174. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Vojnović, V.; Spasenović, M.; Pešić, I.; Vićentić, T.; Rašljić-Rafajilović, M.; Ilić, S.D.; Pergal, M.V. Pulse Sensors Based on Laser-Induced Graphene Transferred to Biocompatible Polyurethane Networks: Fabrication, Transfer Methods, Characterization, and Application. Chemosensors 2025, 13, 122. [Google Scholar] [CrossRef]
- Scardaci, V.; Compagnini, G. Raman spectroscopy data related to the laser induced reduction of graphene oxide. Data Brief 2021, 38, 107306. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhou, T.; Zhang, J.; Zhang, A. Local Controllable Laser Patterning of Polymers Induced by Graphene Material. ACS Appl. Mater. Interfaces 2016, 8, 28077–28085. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Hidayah, N.M.S.; Liu, W.-W.; Lai, C.-W.; Noriman, N.Z.; Khe, C.-S.; Hashim, U.; Lee, H.C. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 2017, 1892, 150002. [Google Scholar]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-induced graphene for flexible and embeddable gas sensors. ACS Appl. Nano Matter. 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, M.; Wang, L.; Li, Y.; Yakobson, B.I.; Tour, J.M. Oxidized Laser-Induced Graphene for Efficient Oxygen Electrocatalysis. Adv. Mater. 2018, 30, 1707319. [Google Scholar] [CrossRef]
- Duy, L.X.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J.M. Laser-induced graphene fibers. Carbon 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Nakajima, Y.; Hayashi, S.; Katayama, A.; Nedyalkov, N.; Terakawa, M. Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide. Nanomaterials 2018, 8, 558. [Google Scholar] [CrossRef]
- Liu, M.; Wu, J.; Cheng, H. Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide. Sci. China Technol. Sci. 2022, 65, 41–52. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, S.-R.; Kil, H.-J.; Kim, Y.-C.; Park, J.-W. Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 2018, 18, 4531–4540. [Google Scholar] [CrossRef] [PubMed]
- Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21, 956–961. [Google Scholar] [CrossRef]
- Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 2000, 16, 7044–7047. [Google Scholar] [CrossRef]
- Chen, G.; Ming, M.; Wenjie, Y.; Li, J.; Hu, Z.; Zhao, W.; Liu, X. Laser-induced graphene/PDMS composite with a dual structure enabling high-sensitivity under micro-strain and extended-range sensing. J. Mater. Chem. A 2025, 13, 25400–25411. [Google Scholar] [CrossRef]
- Zou, Y.; Zhong, M.; Li, S.; Qing, Z.; Xing, X.; Gong, G.; Yan, R.; Qin, W.; Shen, J.; Zhang, H.; et al. Flexible wearable strain sensors based on laser-induced graphene for monitoring human physiological signals. Polymers 2023, 15, 3553. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, H.; Yi, K.; Lin, J.; Chen, A.; Chen, L.; Zou, Z.; Liu, M.; Ji, Y.; Dong, L.; et al. Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure. Coatings 2023, 13, 155. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Wu, P.; Huang, W.; Gao, W.; Fang, F.; Cai, N.; Chen, R.; Zhu, Z. Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. Sensors 2020, 20, 4266. [Google Scholar] [CrossRef] [PubMed]
- Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J.Y. MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Ton (°C) | Residue at 650 °C (%) | Tmax (°C) |
---|---|---|---|
LIG/PDMS/10% PEG | 418 | 11.6 | 181/448/491 |
LIG/PDMS/20% PEG | 413 | 7.8 | 279/443 |
LIG/PDMS/30% PEG | 343 | 12.3 | 304/447 |
LIG/PDMS/40% PEG | 343 | 10.6 | 299/448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavran, A.; Pergal, M.V.; Vićentić, T.; Rašljić Rafajilović, M.; Pašti, I.A.; Bošković, M.V.; Spasenović, M. Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing. Sensors 2025, 25, 5238. https://doi.org/10.3390/s25175238
Gavran A, Pergal MV, Vićentić T, Rašljić Rafajilović M, Pašti IA, Bošković MV, Spasenović M. Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing. Sensors. 2025; 25(17):5238. https://doi.org/10.3390/s25175238
Chicago/Turabian StyleGavran, Anđela, Marija V. Pergal, Teodora Vićentić, Milena Rašljić Rafajilović, Igor A. Pašti, Marko V. Bošković, and Marko Spasenović. 2025. "Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing" Sensors 25, no. 17: 5238. https://doi.org/10.3390/s25175238
APA StyleGavran, A., Pergal, M. V., Vićentić, T., Rašljić Rafajilović, M., Pašti, I. A., Bošković, M. V., & Spasenović, M. (2025). Laser-Induced Graphene on Biocompatible PDMS/PEG Composites for Limb Motion Sensing. Sensors, 25(17), 5238. https://doi.org/10.3390/s25175238