3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy
Abstract
1. Introduction
2. Methodology
3. Results
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michelsen, O.B.; Steinnes, E. Determination of copper in geological material by neutron activation and gamma-gamma coincidence spectrometry. Talanta 1968, 15, 574–578. [Google Scholar] [CrossRef] [PubMed]
- El-Taher, A. INAA and DNAA for uranium determination in geological samples from Egypt. Appl. Radiat. Isot. 2010, 68, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, V.M.; Frontasyeva, M.V.; Lavdanskij, P.A.; Stephanov, N.I. NAA for optimization of radiation shielding of nuclear power plants. J. Radioanal. Nucl. Chem. 1994, 180, 83–95. [Google Scholar] [CrossRef]
- Waltar, A.E.; Langevin-Joliot, H. Radiation and Modern Life: Fulfilling Marie Curie’s Dream; Prometheus: New York, NY, USA, 2004; 336p. [Google Scholar]
- Medhat, M.E.; Fayez-Hassan, M. Elemental analysis of cement used for radiation shielding by instrumental neutron activation analysis. Nucl. Eng. Des. 2011, 241, 2138–2142. [Google Scholar] [CrossRef]
- Uwah, E.J.; Rosenberg, R.J. Measurement of radioelement contents of rocks of Ugep, S.E. Nigeria, by gamma-ray spectrometric and instrumental neutron activation analysis techniques. Appl. Radiat. Isot. 1993, 44, 855–858. [Google Scholar] [CrossRef]
- Alden, J.R.; Minc, L.; Lynch, T.F. Identifying the sources of Inka period ceramics from northern Chile: Results of a neutron activation study. J. Archaeol. Sci. 2006, 33, 575–594. [Google Scholar] [CrossRef]
- Huckell, B.B.; Kilby, J.D.; Boulanger, M.T.; Glascock, M.D. Sentinel Butte: Neutron activation analysis of White River Group chert from a primary source and artifacts from a Clovis cache in North Dakota, USA. J. Archaeol. Sci. 2011, 38, 965–976. [Google Scholar] [CrossRef]
- Moslehi, A.; Raisali, G.; Lamehi, M. Comparison study of various plastics as the wall material of THGEM-based microdosemeters for fast neutron measurements. Radiat. Prot. Dosim. 2017, 173, 286–292. [Google Scholar] [CrossRef]
- Malta, G.; Kondrat, S.A.; Freakley, S.J.; Davies, C.J.; Dawson, S.; Liu, X.; Lu, L.; Dymkowski, K.; Fernandez-Alonso, F.; Mukhopadhyay, S.; et al. Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-ray Absorption and Inelastic Neutron Scattering Study. ACS Catal. 2018, 8, 8493–8505. [Google Scholar] [CrossRef]
- Arriola, H.; Longoria, L.; Quintero, A.; Guzman, D. INAA of trace elements in colorectal cancer patients. Biol. Trace Elem. Res. 1997, 71, 563–568. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S. Trace Element Levels in Prostate Gland as Carcinoma’s Markers. J. Cancer Ther. 2017, 8, 131–145. [Google Scholar] [CrossRef]
- Oda, K.; Encho, H.; Yoneda, H.; Miyake, H.; Urabe, I.; Kobayashi, K. Application of CR-39 Track Detector to Neutron Spectrum Measurement. J. Nucl. Sci. Technol. 1991, 28, 608–617. [Google Scholar] [CrossRef]
- Ziaie, F.; Hosseini, A.A.; Durrani, S.A. Neutron Flux Distribution Measurement Methods & Comparison. Radiat. Meas. 1997, 28, 533–536. [Google Scholar] [CrossRef]
- Kumamoto, Y. Alpha tracks in cellulose nitrate as detector elements for spherical moderator type neutron monitors. Health Phys. 1973, 24, 558–559. [Google Scholar] [PubMed]
- Artsimovich, M.V.; Vajsband, D.F.; Knizhnik, E.I.; Onoshko, N.F.; Tokarevsky, V.V. Use of CR-39 plastic as a track detector for reactor experiments with low neutron fluences. In Proceedings of the Materialy 2 Vsesoyuznojshkoly-Seminara Po Tverdotel’nym Trekovym Detektoram i Avtoradiograffi, Odessa, Ukraine, 1989. [Google Scholar]
- Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. J. Microsc. 2010, 237, 1–6. [Google Scholar] [CrossRef]
- Wertheim, D.; Gillmore, G. Application of confocal microscopy for surface and volume imaging of solid-state nuclear track detectors. J. Microsc. 2014, 254, 42–46. [Google Scholar] [CrossRef]
- Gillmore, G.; Wertheim, D.; Crust, S. Effects of etching time on alpha tracks in Solid State Nuclear Track Detectors. Sci. Total Environ. 2017, 575, 905–909. [Google Scholar] [CrossRef]
- Cartwright, B.G.; Shirk, E.K.; Price, P.B. A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl. Instrum. Meas. 1978, 153, 457–460. [Google Scholar] [CrossRef]
- Fews, A.P.; Lamb, M.J.; Savage, M. Thermonuclear Particle Imaging by Maximum Entropy. Opt. Commun. 1992, 94, 259–272. [Google Scholar] [CrossRef]
- Fews, A.P.; Lamb, M.J.; Savage, M. Three-Dimensional alpha Particle Imaging of Laser Driven Implosions. Laser Part. Beams 1994, 12, 1–11. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Yea, K.-H.; Kwon, D.-H.; Park, S.-K.; Jeong, Y.U.; Cha, H. Efficient Fast Neutron Generation in a Femtosecond, Deuterated, Polystyrene Plasma. J. Korean Phys. Soc. 2009, 55, 543–548. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Forsley, L.P.G.; Carbonelle, P.; Morey, M.S.; Tinsley, J.R.; Hurley, J.P.; Gordon, F.E. Comparison of SEM and optical analyses of DT neutron tracks in CR-39 detectors. Radiat. Meas. 2012, 47, 57–66. [Google Scholar] [CrossRef]
- Wertheim, D.; Gillmore, G.; Gill, I.; Petford, N. High Resolution 3D Confocal Microscope Imaging of Volcanic Ash Particles. Sci. Total Environ. 2017, 590–591, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, D.; Miyashita, L.; Foley, G.; Gill, I.; Giddens, R.; Gillmore, G.; Dobson, R.; Semple, S.; Rule, A.; Grigg, J. 3D Imaging of Roadside and Underground Railway Particulate Matter Structures. Environ. Sci. Technol. Lett. 2023, 10, 118–123. [Google Scholar] [CrossRef]
- Gressier, V. Starting with neutron calibrations. In Proceedings of the Consultative Committee on Ionizing Radiation Webinar, Online, 16 April 2024. [Google Scholar]
- ISO 8529-1; Reference Neutron Radiations–Part 1: Characteristics and Methods of Production. International Organization of Standardization: Geneva, Switzerland, 2001.
- Ambrosi, P. Radiation protection and environmental standards. Metrologia 2009, 46, S99–S111. [Google Scholar] [CrossRef]
- Gressier, V.; Taylor, G.C. Calibration of neutron-sensitive devices. Metrologia 2011, 48, S313–S327. [Google Scholar] [CrossRef]
- Uckan, T.; March-Leuba, J.; Powell, D.; White, J.D.; Glaser, J. 241AmBe Sealed Neutron Source Assessment Studies for the Fissile Mass Flow Monitor; Oak Ridge National Laboratory: Oak Ridge, Tennessee, TN, USA, 2003; ORNL/TM-2003/184184; 13p.
- Krause, C. New Answer for Cancer? Oak Ridge Natl. Lab. Rev. 2003, 36, 26–27. [Google Scholar]
- Edgecock, T.R.; Bennett, J.R.J.; Green, S.; Pheonix, B.; Scott, M. A study of the production of neutrons for boron neutron capture therapy using a proton accelerator. In Proceedings of the 5th International Particle Accelerator Conference, IPAC2014, Dresden, Germany, 15–20 June 2014; pp. 2195–2197. [Google Scholar]
- Gordon, K.; Gulidov, I.; Fatkhudinov, T.; Koryakin, S.; Kaprin, A. Fast and Furious: Fast Neutron Therapy in Cancer Treatment. Int. J. Part. Ther. 2022, 9, 59–69. [Google Scholar] [CrossRef]
- D’Ericco, F.; Weiss, M.; Luszik-Bhadra, M.; Matzke, M.; Bernardi, L.; Cecchi, A. A CR-39 Track Image Analyser for neutron spectrometry. Radiat. Meas. 1997, 28, 823–830. [Google Scholar] [CrossRef]
- Kading, E.E.; Aviv, O.; Eliyahu, I.; Gai, M.; Halfon, S.; Hass, M.; Howell, C.R.; Kijel, D.; Mishnayot, Y.; Mukul, I.; et al. Tests and calibrations of nuclear track detectors (CR39) for operation in high neutron flux. Phys. Rev. Res. 2020, 2, 023279. [Google Scholar] [CrossRef]
Detector | Breadth | Width | Depth | Angle |
---|---|---|---|---|
μm | μm | μm | 0° | |
6024565 | 8.36 | 7.68 | 2.03 | |
4.17 | 4.00 | 1.33 | ||
30° | ||||
6024567 | 11.80 | 9.1 | 4.39 | |
11.09 | 9.03 | 6.14 | ||
6.18 | 5.52 | 0.77 | ||
7.22 | 6.35 | 2.26 | ||
60° | ||||
6024578 | 6.76 | 6.22 | 1.34 | |
4.67 | 4.63 | 0.98 | ||
6024579 | 15.5 | 14.89 | 8.34 | |
Median | 8.41 | 7.49 | 3.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillmore, G.K.; Wertheim, D.; Flowers, A.; Dugdale, M.; Eakins, J.S.; Olssen, K. 3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy. Sensors 2025, 25, 5256. https://doi.org/10.3390/s25175256
Gillmore GK, Wertheim D, Flowers A, Dugdale M, Eakins JS, Olssen K. 3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy. Sensors. 2025; 25(17):5256. https://doi.org/10.3390/s25175256
Chicago/Turabian StyleGillmore, Gavin K., David Wertheim, Alan Flowers, Maria Dugdale, Jonathan S. Eakins, and Kerry Olssen. 2025. "3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy" Sensors 25, no. 17: 5256. https://doi.org/10.3390/s25175256
APA StyleGillmore, G. K., Wertheim, D., Flowers, A., Dugdale, M., Eakins, J. S., & Olssen, K. (2025). 3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy. Sensors, 25(17), 5256. https://doi.org/10.3390/s25175256