AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis
Abstract
Highlights
- Vibration-induced image features (natural frequency, damping) strongly correlate with kiwifruit firmness.
- A neural network using these features achieved very high prediction accuracy (R2 = 0.9951, RMSE = 0.0185 MPa).
- Enables rapid, non-destructive, and vision-only firmness testing of kiwifruit at high throughput (700–1000 fruits/h).
- Provides a cost-effective alternative to destructive penetrometer and laser-based methods, with potential for automated grading and quality control.
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Device Design and Development
2.3. Developing the AI-Based Predictive Model to Determine the Firmness
Neural Networks
2.4. Data Analysis
3. Results and Discussion
3.1. Vibration Analysis
3.2. Predictive Modeling Performance and Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CCI | Citrus color index |
CNNs | Convolutional neural networks |
RMSE | Root mean square error |
SAM | Segment Anything Model |
UAV | Unmanned aerial vehicle |
References
- El-Mesery, H.S.; Mao, H.; Abomohra, A.E.-F. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef] [PubMed]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc. Technol. 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Cubero, S.; Albert, F.; Prats-Moltalbán, J.M.; Fernandez-Pacheco, D.G.; Blasco, J.; Aleixos, N. Application for the estimation of the standard citrus colour index (CCI) using image processing in mobile devices. Biosyst. Eng. 2018, 167, 63–74. [Google Scholar] [CrossRef]
- Mehdizadeh, A.S.; Kazemi, S.M. Development and evaluation of a strawberry sorting system using machine vision technique. J. Res. Mech. Agric. Mach. 2017, 6, 61–69. [Google Scholar]
- Surya Prabha, D.; Satheesh Kumar, J. Assessment of banana fruit maturity by image processing technique. J. Food Sci. Technol. 2015, 52, 1316–1327. [Google Scholar] [CrossRef]
- Zhou, X.; Ampatzidis, Y.; Lee, W.S.; Zhou, C.; Agehara, S.; Schueller, J.K. Deep learning-based postharvest strawberry bruise detection under UV and incandescent light. Comput. Electron. Agric. 2022, 22, 107389. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, W.S.; Ampatzidis, Y.; Chen, Y.; Peres, N.; Fraisse, C. Strawberry maturity classification from UAV and near-ground imaging using deep learning. Smart Agric. Technol. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Huang, Z.; Lee, W.S.; Yang, P.; Ampatzidis, Y.; Shinsuke, A.; Peres, N.A. Advanced canopy size estimation in strawberry production: A machine learning approach using YOLOv11 and SAM. Comput. Electron. Agric. 2025, 236, 110501. [Google Scholar] [CrossRef]
- Momeny, M.; Neshat, A.A.; Jahanbakhshi, A.; Bakhtoor, M.; Ampatzidis, Y.; Radeva, P. Grading and fraud detection of Saffron via learning-to-augment incorporated inception-v4 CNN. Food Control 2023, 147, 109554. [Google Scholar] [CrossRef]
- Panta, S.; Zhou, B.; Zhu, L.; Maness, N.; Rohla, C.; Costa, L.; Ampatzidis, Y.; Fontainer, C.; Kaur, A.; Zhang, L. Selecting non-linear mixed effect model for growth and development of pecan nut. Sci. Hortic. 2023, 309, 111614. [Google Scholar] [CrossRef]
- Orak, H.; Abdanan Mehdizadeh, S.; Soltanikazemi, M. Determination of the vibration response of sugarcane stalk to predict fiber content and Brix using image processing. J. Res. Mech. Agric. Mach. 2018, 7, 1–9. [Google Scholar]
- Etaati, A.; Abdanan Mehdizadeh, S.; Wang, H.; Pather, S. Vibration damping characteristics of short hemp fibre thermoplastic composites. J. Reinf. Plast. Compos. 2014, 33, 330–341. [Google Scholar] [CrossRef]
- Nadafzadeh, M.; Abdanan Mehdizadeh, S.; Soltanikazemi, M. Development of computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browning using genetic programming modeling. Sci. Hortic. 2018, 231, 201–209. [Google Scholar] [CrossRef]
- Noma, H.; Shinozaki, T.; Iba, K.; Teramukai, S.; Furukawa, T.A. Confidence intervals of prediction accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction methods. Stat. Med. 2021, 40, 5691–5701. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pidakala, P.; Billing, D.; Burdon, J. Kiwifruit firmness: Measurement by penetrometer and non-destructive devices. Postharvest Biol. Technol. 2016, 120, 127–137. [Google Scholar] [CrossRef]
- Landahl, S.; Terry, L.A. Non-destructive discrimination of avocado fruit ripeness using laser Doppler vibrometry. Biosyst. Eng. 2020, 194, 251–260. [Google Scholar] [CrossRef]
- Cobus, L.A.; van Wijk, K. Non-contact acoustic method to measure depth-dependent elastic properties of a kiwifruit. Wave Motion 2023, 119, 103126. [Google Scholar] [CrossRef]
- Foerster, J.; Truppel, I.; Bochow-Neß, O.; Geyer, M. Comparison of acoustic sensor systems for quality analysis of asparagus using scanning laser vibrometry for visualization. Comput. Electron. Agric. 2013, 91, 10–18. [Google Scholar] [CrossRef]
- Terasaki, S.; Wada, N.; Sakurai, N.; Muramatsu, N.; Yamamoto, R.; Nevins, D.J. Nondestructive measurement of kiwifruit ripeness using a laser Doppler vibrometer. Trans. ASAE 2001, 44, 81–87. [Google Scholar] [CrossRef]
- Nakano, R.; Akimoto, H.; Fukuda, F.; Kawai, T.; Ushijima, K.; Fukamatsu, Y.; Kubo, Y.; Fujii, Y.; Hirano, K.; Morinaga, K.; et al. Nondestructive detection of split pit in peaches using an acoustic vibration method. Hortic. J. 2018, 87, 281–287. [Google Scholar] [CrossRef]
- Muramatsu, N.; Sakurai, N.; Wada, N.; Yamamoto, R.; Tanaka, K.; Asakura, T.; Ishikawa-Takano, Y.; Nevins, D.J. Remote sensing of fruit textural changes with a laser Doppler vibrometer. J. Am. Soc. Hortic. Sci. 2000, 125, 120–127. [Google Scholar] [CrossRef]
- Sun, T.; Huang, K.; Xu, H.; Ying, Y. Research advances in nondestructive determination of internal quality in watermelon/melon: A review. J. Food Eng. 2010, 100, 569–577. [Google Scholar] [CrossRef]
- Muramatsu, N.; Sakurai, N.; Wada, N.; Yamamoto, R.; Takahara, T.; Ogata, T.; Tanaka, K.; Asakura, T.; Ishikawa-Takano, Y.; Nevins, D.J. Evaluation of fruit tissue texture and internal disorders by laser Doppler detection. Postharvest Biol. Technol. 1999, 15, 83–91. [Google Scholar] [CrossRef]
- Diezma-Iglesias, B.; Valero, C.; García-Ramos, F.J.; Ruiz-Altisent, M. Monitoring of firmness evolution of peaches during storage by combining acoustic and impact methods. J. Food Eng. 2006, 77, 926–935. [Google Scholar] [CrossRef]
- Hiruta, T.; Sasaki, K.; Hosoya, N.; Maeda, S.; Kajiwara, I. Firmness evaluation of postharvest pear fruit during storage based on a vibration experiment technique using a dielectric elastomer actuator. Postharvest Biol. Technol. 2021, 182, 111697. [Google Scholar] [CrossRef]
- Terasaki, S.; Sakurai, N.; Zebrowski, J.; Murayama, H.; Yamamoto, R.; Nevins, D.J. Laser Doppler vibrometer analysis of changes in elastic properties of ripening ‘La France’ pears after postharvest storage. Postharvest Biol. Technol. 2006, 42, 198–207. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, X.; Gao, H.; He, T.; Lv, Z.; Zhangzhong, L. When crops meet machine vision: A review and development framework for a low-cost nondestructive online monitoring technology in agricultural production. Agric. Commun. 2024, 2, 100029. [Google Scholar] [CrossRef]
- He, L.; Tao, L.; Ma, Z.; Du, X.; Wan, W. Cherry tomato firmness detection and prediction using a vision-based tactile sensor. J. Food Meas. Charact. 2024, 18, 1053–1064. [Google Scholar] [CrossRef]
- Crump, W.W.; Peace, C.; Zhang, Z.; McCord, P. Detection of breeding-relevant fruit cracking and fruit firmness quantitative trait loci in sweet cherry via pedigree-based and genome-wide association approaches. Front. Plant Sci. 2022, 13, 823250. [Google Scholar] [CrossRef]
- Oveisi, Z.; Minaei, S.; Rafiee, S.; Eyvani, A.; Borghei, A. Application of vibration response technique for the firmness evaluation of pear fruit during storage. J. Food Sci. Technol. 2014, 51, 3261–3268. [Google Scholar] [CrossRef]
Sample Label | Firmness (MPa) | Natural Frequency (Hz) | Damping Ratio | Oscillation Pattern |
---|---|---|---|---|
Unripe | 14.41 ± 0.8 | 272 ± 0.9 | 0.394 ± 0.09 | High amplitude, slow decay |
Semi-ripe | 10.37 ± 0.6 | 244 ± 1.4 | 0. 501 ± 0.05 | Medium amplitude, moderate decay |
Ripe | 6.56 ± 0.5 | 239 ± 1.3 | 0.631 ± 0.06 | Low amplitude, fast decay |
Overripe | 2.51 ± 0.5 | 223 ± 1.9 | 0.957 ± 0.04 | Very low amplitude, rapid decay |
Paired Samples Test | |||||
---|---|---|---|---|---|
Paired Differences | df | Sig. (2-Tailed) | |||
Mean | Std. Deviation | Std. Error Mean | |||
Actual–Prediction | −0.0105 | 0.0155 | 0.0030 | 35 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouri, S.F.; Mehdizadeh, S.A.; Ampatzidis, Y. AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis. Sensors 2025, 25, 5279. https://doi.org/10.3390/s25175279
Nouri SF, Mehdizadeh SA, Ampatzidis Y. AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis. Sensors. 2025; 25(17):5279. https://doi.org/10.3390/s25175279
Chicago/Turabian StyleNouri, Seyedeh Fatemeh, Saman Abdanan Mehdizadeh, and Yiannis Ampatzidis. 2025. "AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis" Sensors 25, no. 17: 5279. https://doi.org/10.3390/s25175279
APA StyleNouri, S. F., Mehdizadeh, S. A., & Ampatzidis, Y. (2025). AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis. Sensors, 25(17), 5279. https://doi.org/10.3390/s25175279