High-Fidelity NIR-LED Direct-View Display System for Authentic Night Vision Goggle Simulation Training
Abstract
1. Introduction
2. Design of an NIR-LED Direct-View Display
2.1. LED Spectral Selection for Night Vision Simulation
- (1)
- The display must simulate human nocturnal vision to create authentically low-illuminance conditions, enabling non-NVG-equipped pilots to experience authentic nocturnal immersion.
- (2)
- LED emission must both trigger NVG detection and accurately replicate NVG spectral responses to natural night-sky irradiance.
- (1)
- (2)
- (3)
- Avoid visual interference for unaided human observers during nighttime training scenarios (human vision has negligible sensitivity beyond 700 nm).
2.2. System Hardware Design
3. NVG Response Characteristics and Gamma Correction for NIR-LED Direct-View Displays
3.1. Modeling of NVG Response Characteristics to NIR-LED Displays
3.2. Gamma Correction for Direct-View Displays Compensating NVG Nonlinear Response Characteristics
4. Experimental Results
4.1. Display Uniformity and Contrast Ratio Characterization
4.2. Night Vision Simulation Effectiveness
- rendering (Figure 12e) exhibits luminance elevation in shadow regions (foliage, lawns, and building facades/windows) combined with expanded highlight saturation zones, collectively inducing resolution degradation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghunandan, V.; Sekhar, M.B.; Tripathy, N.K.; Joshi, V.V. Study of performance characteristics of ANVIS MK-III night-vision goggle and comparison with other NVGs for aviation usage. Indian J. Aerosp. Med. 2022, 66, 21–26. [Google Scholar] [CrossRef]
- Jian, B.L.; Peng, C.C. Development of an automatic testing platform for Aviator’s night vision goggle honeycomb defect inspection. Sensors 2017, 17, 1403. [Google Scholar] [CrossRef]
- Podobedov, V.B.; Eppeldauer, G.P.; Larason, T.C. Calibration of night vision goggles: An SI-units-based gain measurement technique. Appl. Opt. 2017, 56, 5830–5837. [Google Scholar] [CrossRef]
- Sharma, D.; Tripathy, N.K.; Raghunandan, V.; Sekhar, B.M. Visual acuity through Night Vision Goggles (NVGs): A comparative assessment between Gen 2++ and Gen 3 NVGs under different illumination conditions. Indian J. Aerosp. Med. 2021, 65, 17–22. [Google Scholar] [CrossRef]
- Estrera, J.P.; Ostromek, T.E.; Isbell, W.; Bacarella, A.V. Modern Night Vision Goggles for Advanced Infantry Applications. In Proceedings of the Helmet-and Head-Mounted Displays VIII: Technologies and Applications, Orlando, FL, USA, 21–23 April 2003; Volume 5079, pp. 196–207. [Google Scholar]
- Task, H.L.; Pinkus, A.R. Theoretical and Applied Aspects of Night Vision Goggle Resolution and Visual Acuity Assessment. In Proceedings of the Head-and Helmet-Mounted Displays XII: Design and Applications, Orlando, FL, USA, 9–13 April 2007; Volume 6557, pp. 183–193. [Google Scholar]
- Stoychev, I.; Hutov, I. Night Vision Monocular-Basic Elements and Development Trends. In Environment. Technology. Resources. In Proceedings of the International Scientific and Practical Conference, Rezekene, Latvia, 27–28 June 2024; Volume 4, pp. 260–268. [Google Scholar]
- Brickner, M.S. Helicopter Flights with Night-Vision Goggles: Human Factors Aspects (No. NASA-TM-101039); NASA: Moffett Field, CA, USA, 1989. [Google Scholar]
- Klaes, S. Flying with Night Vision Goggles: The Desire for realistic Flight Training. In Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Honolulu, HA, USA, 18–21 August 2008; p. 7031. [Google Scholar]
- Chrzanowski, K. Review of night vision technology. Opto-Electron. Rev. 2013, 21, 153–181. [Google Scholar] [CrossRef]
- Arthur, K. Effects of Field of View on Task Performance with Head-Mounted Displays. In Proceedings of the Conference Companion on Human Factors in Computing Systems, Vancouver, BC, Canada, 13–18 April 1996; pp. 29–30. [Google Scholar]
- Psotka, J.; Lewis, S.A.; King, D. Effects of field of view on judgments of self-location: Distortions in distance estimations even when the image geometry exactly fits the field of view. Presence 1998, 7, 352–369. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, L.; Ma, J.; Chen, T.; Wang, X.; Zhang, Q. Survey on night vision goggles usage in helicopter crew and its enlightenment on curriculum construction of helicopter medical rescue in night battlefield. Acad. J. Chin. Pla. Med. Sch. 2023, 44, 1340–1343. [Google Scholar]
- Stasiak, K.; Zyskowska, M.; Głowinkowska, I.; Kowalczuk, K.; Lewkowicz, R. Influence of night vision goggles with white and green phosphor screens on selected parameters of the eye and fatigue. Ergonomics 2021, 65, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, H.; Yang, J. Night vision anti-halation method based on infrared and visible video fusion. Sensors 2022, 22, 7494. [Google Scholar] [CrossRef]
- Parush, A.; Gauthier, M.S.; Arseneau, L.; Tang, D. The human factors of night vision goggles: Perceptual, cognitive, and physical factors. Rev. Hum. Factors Ergon. 2011, 7, 238–279. [Google Scholar] [CrossRef]
- Chen, S.; Tian, D.; Yu, F.; Zhou, Q.; Du, J.; Xiang, Q.; Li, Z. Depth perception and distance assessment under night vision goggles and their influence factor. In Man-Machine-Environment System Engineering; Long, S., Dhillon, B.S., Eds.; Springer: Singapore, 2023; Volume 941, pp. 115–125. [Google Scholar]
- Hogervorst, M.A.; Kooi, F.L. NVG-the-Day: Towards Realistic Night-Vision Training. In Proceedings of the Electro-Optical and Infrared Systems: Technology and Applications XI, Amsterdam, The Netherlands, 22–25 September 2014; Volume 9249, pp. 213–222. [Google Scholar]
- Lazic, D.A.; Grujic, V.; Tanaskovic, M. The role of flight simulation in flight training of pilots for crisis management. South Florida J. Dev. 2022, 3, 3624–3636. [Google Scholar] [CrossRef]
- Grujić, V.; Tanasković, M. The Role of Flight Simulation in Flight Training of Pilots for Crisis Management. In Proceedings of the Sinteza 2020—International Scientific Conference on Information Technology and Data Related Research, Belgrade, Serbia, 17–23 October 2020; pp. 214–221. [Google Scholar]
- Dyer, J.L.; Young, K.M. Night Vision Goggle Research and Training Issues for Ground Forces: A Literature Review; Army Research Institute for Behavioral and Social Sciences: Fort Benning, GA, USA, 1998. [Google Scholar]
- Yang, W.; Huang, X.; Han, R.; Gao, X.; Yang, G.; Si, Z.; Wang, H.; Wei, R.; Weng, Y.; Zhang, Y. Application and Technology Development of Night Vision Goggle for US Army. In Proceedings of the SPIE 12921, Third International Computing Imaging Conference (CITA 2023), Sydney, Australia, 1–3 June 2023; Volume 12921. [Google Scholar]
- Aeromedical Aspects of Night Vision Device (NVD) Training—Aamedp-1.21, Edition A. (No Enabled Versions); Standards Central. 2022. Available online: https://publishers.standardstech.com/content/military-dod-stanag-7147 (accessed on 9 July 2025).
- Kooi, F.; Toet, A. What’s Crucial in Night Vision Goggle Simulation? In Proceedings of the SPIE—The International Society for Optical Engineering, Orlando, FL, USA, 28 March–1 April 2005; Volume 5802, pp. 37–46. [Google Scholar]
- Martin, E.; Howard, C. 53.4: Night vision goggles: Issues for simulation and training. SID Symp. Dig. Tech. Pap. 2001, 32, 1304–1307. [Google Scholar] [CrossRef]
- Sproge, S. Night Vision Goggle Simulation in a Mixed Reality Flight Simulator with Seamless Integrated Real World. Master’s Thesis, Linköping University, Linköping, Sweden, 2024. [Google Scholar]
- Beilstein, D.L. Visual Simulation of Night Vision Goggles in a Chromakeyed, Augmented, Virtual Environment. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2003. [Google Scholar]
- Curley, T.M.; Huggins, J.; Ellis, S.; Meyer, F.; Grayson, E.; Johnston, S.; Lawrence, D.; Wu, C.; Diemunsch, J. NOCTURNAL: A virtual reality simulation exploring the effects of night vision goggle configurations and luminance conditions on human performance. In International Conference on Human-Computer Interaction; Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 14–23. [Google Scholar]
- Ernst, J.M.; Laudien, T.; Schmerwitz, S. Implementation of a Mixed-Reality Flight Simulator: Blending Real and Virtual with a Video-See-Through Headmounted Display. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications V, Orlando, FL, USA, 30 April–5 May 2023; Volume 12538, pp. 181–190. [Google Scholar]
- Baarspul, M. A review of flight simulation techniques. Prog. Aerosp. Sci. 1990, 27, 1–120. [Google Scholar] [CrossRef]
- Miljković, D. Wide-View Visual Systems for Flight Simulation. In Proceedings of the MIPRO 2009, Opatija, Hrvatska, 25–29 May 2009; pp. 375–380. [Google Scholar]
- Yuan, Y.; Song, J.; Dong, B.; Hou, Z.; Wang, S.; Yang, M.; Zhang, D. Ergonomic analysis of pilot’s night vision goggles in operational use and performance improvement. Infrared Technol. 2022, 44, 1287–1292. [Google Scholar]
- Hogervorst, M. Toward Realistic Night-Vision Simulation; SPIE Newsroom. 2009. Available online: https://www.spie.org/news/1573-toward-realistic-night-vision-simulation (accessed on 9 July 2025).
- Ali, M.H.; Lyon, P.; De Meerleer, P. Night Vision Goggle Stimulation Using LCoS and DLP Projection Technology, which is Better? In Proceedings of the Display Technologies and Applications for Defense, Security, and Avionics VIII; and Head-and Helmet-Mounted Displays XIX, Baltimore, MD, USA, 5–9 May 2014; Volume 9086, p. 908602. [Google Scholar]
- Clark, J. Physics-Based Stimulation for Night Vision Goggle Simulation (No. AFRLHEAZTR20060050). 2006. Available online: https://apps.dtic.mil/sti/citations/ADA458393 (accessed on 9 July 2025).
- Martin, E.; Clark, J. Physics Based Simulation of Night Vision Goggles. Presented at the IMAGE 2000 Conference, Scottsdale, AZ, USA, 10–14 July 2000. [Google Scholar]
- Burggraf, H.; Plass, W.; Lloyd, C.J.; Nigus, S.G.; Ford, B.K. High level Vis IR Stimulated NVG Training. In Proceedings of the IMAGE 09 Conference, St. Louis, MO, USA, 10–15 October 2009. [Google Scholar]
- Lloyd, C.J.; Nigus, S.G.; Ford, B.K. Towards repeatable, deterministic NVG Stimulation. In Proceedings of the IMAGE 08 Conference, St. Louis, MO, USA, 31 May–4 June 2008. [Google Scholar]
- Lloyd, C.J.; Nigus, G.S.; Ford, B.K.; Linn, T. Proposed Method of Measuring Display Systems for Training with Stimulated Night Vision Goggles. In Proceedings of the 2010 Image Conference, Scottsdale, AZ, USA, 6–7 July 2010. [Google Scholar]
- Zeng, Y.; Dai, J.; Xu, B.; Qiu, K. A novel LED spherical visual display system and its image geometric correction method. In Artificial Intelligence and Human-Computer Interaction; Ye, Y., Siarry, P., Eds.; IOS Press: New York, NY, USA, 2024; Volume 385, pp. 67–75. [Google Scholar]
- ISO/CIE 11664-1:2019(E); Colorimetry—Part 1: CIE Standard Colorimetric Observers. ISO: Geneva, Switzerland, 2019.
- MIL-STD-3009; Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. Department of Defense: Washington, DC, USA, 2001.
- Vatsia, M.L.; Stich, U.K.; Dunlap, D. Night-Sky Radiant Sterance from 450 to 2000 Nanometers (No. ECOM7022); U.S. Army Electronics Command: Fort Monmouth, NJ, USA, 1972.
- Yang, Z.; Luo, Z.; Ding, Y.; Qian, Y.; Chen, S.C.; Lin, C.L.; Wu, S.T. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2024, 2, 100398. [Google Scholar] [CrossRef]
- Miao, W.C.; Hsiao, F.H.; Sheng, Y.; Lee, T.Y.; Hong, Y.H.; Tsai, C.W.; Chen, H.L.; Liu, Z.; Lin, C.L.; Chung, R.J.; et al. Microdisplays: Mini-LED, micro-OLED, and micro-LED. Adv. Optical Mater. 2024, 12, 2300112. [Google Scholar] [CrossRef]
- Yang, Z.; Hsiang, E.L.; Qian, Y.; Wu, S.T. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers. Appl. Sci. 2022, 12, 1239. [Google Scholar] [CrossRef]
- Björck, Å. Numerical Methods for Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2024. [Google Scholar]
- Mascarenhas, W.F. The divergence of the BFGS and Gauss Newton methods. Math. Program. 2014, 147, 253–276. [Google Scholar] [CrossRef]
- Lin, Z.H.; Lai, Q.Y.; Li, H.Y. A machine-learning strategy to detect Mura defects in a low-contrast image by piecewise gamma correction. Sensors 2024, 24, 1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Z.; Han, X.; Sun, Q.; Zhao, J.; Liu, J. Infrared and visible image fusion based on visual saliency map and image contrast enhancement. Sensors 2022, 22, 6390. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Chen, S.C.; Hsiang, E.L.; Akimoto, H.; Lin, C.L.; Wu, S.T. Enhancing a display’s sunlight readability with tone mapping. Photonics 2024, 11, 578. [Google Scholar] [CrossRef]
- IEC 62922:2016/AMD1:2021; Organic Light Emitting Diode (OLED) Panels for General Lighting—Performance Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- IEC 61947-1:2002; Electronic Projection—Measurement and Documentation of Key Performance Criteria—Part 1: Fixed Resolution Projectors. International Electrotechnical Commission: Geneva, Switzerland, 2002.
Wavelength (nm) | 780 | 810 | 830 | 850 | 880 | 900 | 940 |
Threshold currents (μA) | 35 | 75 | 300 | 400 | 2000 | 2000 | -- |
Test Point | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|
Infrared irradiance () | 9.285 | 9.741 | 9.265 | 8.502 | 8.843 | 9.276 | 8.833 | 8.318 | 9.372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Xu, B.; Qiu, K. High-Fidelity NIR-LED Direct-View Display System for Authentic Night Vision Goggle Simulation Training. Sensors 2025, 25, 5368. https://doi.org/10.3390/s25175368
Zeng Y, Xu B, Qiu K. High-Fidelity NIR-LED Direct-View Display System for Authentic Night Vision Goggle Simulation Training. Sensors. 2025; 25(17):5368. https://doi.org/10.3390/s25175368
Chicago/Turabian StyleZeng, Yixiong, Bo Xu, and Kun Qiu. 2025. "High-Fidelity NIR-LED Direct-View Display System for Authentic Night Vision Goggle Simulation Training" Sensors 25, no. 17: 5368. https://doi.org/10.3390/s25175368
APA StyleZeng, Y., Xu, B., & Qiu, K. (2025). High-Fidelity NIR-LED Direct-View Display System for Authentic Night Vision Goggle Simulation Training. Sensors, 25(17), 5368. https://doi.org/10.3390/s25175368