2SLOD-HCG: HCG Test Strip Concentration Prediction Network
Abstract
1. Introduction
2. Related Work
2.1. Medical Testing Methods
2.2. Current Status of Mobile Terminal Detection Applications
2.3. Current Status of Test Line Detection
- For the first time, we employ artificial intelligence to determine test strip concentrations from smartphone images. The chromogenic capacity of colloidal gold was enhanced to lower the detection limit, and AI-based techniques were integrated to accurately quantify HCG levels. This approach enables rapid detection of ectopic pregnancy using colloidal gold-based POCT test strips;
- We suggest the S-5 module design at the bottom of the backbone network to fulfill the requirement for small-region target detection. The SimAM lightweight attention mechanism is added after the C2f module to increase detection accuracy;
- To improve the model’s ability to perceive global characteristics, we add FPN operators to the bidirectional multi-scale fusion cross-FPN in the neck section and integrate a lightweight transformer encoder structure.
3. Main Research Content
3.1. Backbone Network Improvement
3.1.1. Improved SPP Module—S-5 Module
3.1.2. Lightweight Attention Mechanism—SimAM
3.2. Neck Network Improvement
3.2.1. FPN Module Enhancement
3.2.2. Lightweight Transformer Enhancement in the Neck
3.3. Loss Function
- (1)
- Distribution Focal Loss (DFL)
- (2)
- Classification Loss
- (3)
- CIoU Loss
4. Experiment
4.1. Experimental Environment and Parameters
4.2. Dataset and Preprocessing
4.3. Quantitative Concentration Prediction
4.4. Ablation Study
4.5. Baseline Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korevaar, T.I.M.; Steegers, E.A.P.; de Rijke, Y.B.; Schalekamp-Timmermans, S.; Visser, W.E.; Hofman, A.; Jaddoe, V.W.V.; Tiemeier, H.; Visser, T.J.; Medici, M.; et al. Reference ranges and determinants of total hCG levels during pregnancy: The Generation R study. Eur. J. Epidemiol. 2015, 30, 1057–1066. [Google Scholar] [CrossRef]
- Li, P.F.; Zhu, H.; Tan, L.; Zhao, D.M.; Ma, L.Y.; Xiang, Y.G.; Zhang, D.; Dou, Q.; Lu, N. Effects of high progesterone on outcomes of in vitro fertilization-embryo transfer in patients with different ovarian responses. Syst. Biol. Reprod. Med. 2015, 61, 161–167. [Google Scholar] [CrossRef]
- Li, H.; Ying, Y.; Cao, Z. Research progress on lateral flow immunoassay rapid detection technology based on smartphone image analysis. Anal. Chem. 2022, 50, 1–11. (In Chinese) [Google Scholar]
- Li, J.; Fu, Q.; Jiang, T. Remote sensing image fusion based on spectral response function and global variance matching. Acta Photonica Sin. 2020, 49, 148–157. (In Chinese) [Google Scholar]
- Fu, Y.; Zhang, L.; Huang, H. A Calibration Method for the Spectral Response Curve of an RGB Camera. CN107170013B, 21 April 2020. (In Chinese). [Google Scholar]
- Wang, Y.; Yan, W.; Zhang, Y.; Lai, M.; Xu, Y. Application of artificial intelligence in pathological images for precision medicine. Mod. Inf. Technol. 2018, 2, 170–172. (In Chinese) [Google Scholar]
- Ongkum, C.; Keawmitr, K.; Boonchieng, E. Analysis system for urine strip test using image processing technique. In Proceedings of the 9th Biomedical Engineering International Conference, Laung Prabang, Laos, 7–9 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ge, X.; Wang, L.-J.; Lee, S.S.; Paulsen, M.H.; Khan, Q.M.; Khalid, Z.M.; Bhalli, J.A.; Waheed, U.; Simpson, C.D.; et al. An ultra low-cost smartphone device for in-situ monitoring of acute organophosphorus poisoning for agricultural workers. Sens. Actuators B Chem. 2018, 275, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zheng, Y.; Wu, J.; Zhao, L.; Shui, L.; Pu, Q.; Liu, S. Smartphone-assisted immunodetection of HIV p24 antigen using reusable, centrifugal microchannel array chip. Talanta 2019, 203, 83–89. [Google Scholar] [CrossRef]
- Choodum, A.; Kanatharana, P.; Wongniramaikul, W.; Nic Daeid, N. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 2013, 115, 143–149. [Google Scholar] [CrossRef]
- Sumriddetchkajorn, S.; Chaitavon, K.; Intaravanne, Y. Mobile-platform based colorimeter for monitoring chlorine concentration in water. Sens. Actuators B Chem. 2014, 191, 561–566. [Google Scholar] [CrossRef]
- Zeinhom, M.M.A.; Wang, Y.; Sheng, L.; Du, D.; Li, L.; Zhu, M.-J.; Lin, Y. Smartphone-based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella enteritidis in milk, cheese and water. Sens. Actuators B Chem. 2018, 261, 75–82. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zhao, D.; Wen, F.; Jiang, J.; Xu, D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens. Bioelectron. 2017, 87, 874–880. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, K.; Xiao, K.; Qin, W.; Lu, W.; Tao, W.; Cui, D. Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 2017, 12, 291. [Google Scholar] [CrossRef]
- You, M.L.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; et al. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano 2017, 11, 6261–6270. [Google Scholar] [CrossRef]
- Lee, H.M.; Choi, D.W.; Kim, S.; Lee, A.; Kim, M.; Roh, Y.J.; Jo, Y.H.; Cho, H.Y.; Lee, H.-J.; Lee, S.-R.; et al. Biosensor-linked immunosorbent assay for the quantification of methionine oxidation in target proteins. ACS Sens. 2021, 7, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Wang, Q.; Sun, N.; Jia, X.; Wang, K.; Xiao, R.; Wang, S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus non-structural protein 1. Anal. Chim. Acta 2019, 1055, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, C.; Phogat, N.; Laufer, S.; Kohl, M.; Deigner, H.-P. A smartphone readout system for gold nanoparticle-based lateral flow assays: Application to monitoring of digoxigenin. Microchim. Acta 2019, 186, 119. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Pu, D.; Zhang, X. Design of an image retrieval system based on Android and content. Inf. Technol. 2014, 38, 200–203. (In Chinese) [Google Scholar]
- Mutholib, A.; Gunawan, T.S.; Chebil, J.; Kartiwi, M. Development of portable automatic number plate recognition system on Android mobile phone. IOP Conf. Ser. Mater. Sci. Eng. 2013, 53, 012066. [Google Scholar] [CrossRef]
- Luo, Q. Research on an Android-Based Image Recognition Client System. Bachelor’s Thesis, Hainan University, Haikou, China, 2014. (In Chinese). [Google Scholar]
- Zhang, X. Research and Development of a Health Diagnosis Program Based on Test Strip Image Feature Recognition. Master’s Thesis, Xidian University, Xi’an, China, 2020. (In Chinese). [Google Scholar]
- Xia, Y.; Li, Y.; Li, C. A wheat disease diagnosis system based on image processing technology and Android phones. J. Anhui Univ. Nat. Sci. 2016, 40, 26–31. (In Chinese) [Google Scholar]
- Tao, Z.; Kong, J.; Jin, X.; Bai, Y.; Su, T. Design of a crop disease and pest image recognition APP system based on deep learning. Comput. Appl. Softw. 2022, 39, 341–345. (In Chinese) [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Han, X.; Chang, J.; Wang, K. Real-time object detection based on YOLO-v2 for tiny vehicle object. Procedia Comput. Sci. 2021, 183, 61–72. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 14, pp. 21–37. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1520–1528. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ju, R.-Y.; Cai, W. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Sci. Rep. 2023, 13, 20077. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Mao, Q.; Li, S.; Hu, X.; Xue, X.; Yao, L. Foreign object detection for belt conveyors in coal mines based on improved YOLOv7. Ind. Min. Autom. 2022, 48, 26–32. (In Chinese) [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919. [Google Scholar]
- Hashemi, S.M.H.; Safari, L.; Dadashzade Taromi, A. Realism in action: Anomaly-aware diagnosis of brain tumors from medical images using YOLOv8 and DeiT. arXiv 2024, arXiv:2401.03302. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
Condition | MAE (IU/L) | R2 | Sensitivity (25 IU/L Threshold) | Specificity (25 IU/L Threshold) | PPV | NPV |
---|---|---|---|---|---|---|
Baseline (iPhone 14 Pro, standard lighting, front-facing, 25 cm) | 6.2 | 0.982 | 0.984 | 0.978 | 0.981 | 0.982 |
Low light (indoor 100 lux) | 7.8 | 0.971 | 0.976 | 0.964 | 0.970 | 0.973 |
Strong direct light (sunlight) | 9.5 | 0.955 | 0.962 | 0.940 | 0.951 | 0.954 |
Warm light (3000 K) | 7.1 | 0.975 | 0.980 | 0.972 | 0.978 | 0.975 |
Cool light (6500 K) | 7.3 | 0.973 | 0.979 | 0.970 | 0.975 | 0.973 |
Glare/reflection present | 10.8 | 0.942 | 0.950 | 0.928 | 0.944 | 0.936 |
Angle 30° | 8.4 | 0.963 | 0.970 | 0.960 | 0.968 | 0.962 |
Distance 40 cm | 9.0 | 0.958 | 0.965 | 0.952 | 0.960 | 0.958 |
Lighting Condition | Detection Accuracy (%) | HCG Concentration (ng/mL) | Actual Concentration (ng/mL) | Predicted Concentration (ng/mL) |
---|---|---|---|---|
Normal light | 98.5 | 0 | 0 | 0.2 |
Low light | 95.2 | 10 | 10 | 9.6 |
Strong light | 93.8 | 20 | 20 | 19.1 |
Normal light + shadow | 94.7 | 50 | 50 | 48.5 |
Low light + shadow | 92.3 | 100 | 100 | 98.7 |
Strong light + glare | 90.1 | 200 | 200 | 197.3 |
Model | Precision (%) | Recall | F1 | MAP | MAE (mIU/mL) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
MobileViT | 84.8 | 86.8 | 85.788 | 50.5 | 35.4 | 88.2 | 85.5 |
TIMESAVER | 85.3 | 86.1 | 85.698 | 50.7 | 33.7 | 89.0 | 86.0 |
YOLOV8 | 89.0 | 89.5 | 89.249 | 53.0 | 28.6 | 91.5 | 89.7 |
2SLOD-HCG | 96.1 | 95.6 | 95.849 | 54.5 | 15.2 | 96.8 | 95.3 |
Model | mAP(%) |
---|---|
YOLOv8 | 45.6 |
YOLOv8 + C-FPN | 48.6 |
YOLOv8 + C-FPN + LIVT | 50.0 |
YOLOv8 + C-FPN + LIVT + S-5 | 52.4 |
YOLOv8 + LIVT + C-FPN + S-5 + SimAM | 54.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Zhao, J.; Kan, S.; Shi, Q.; Wang, N.; Li, J.; Ma, Z. 2SLOD-HCG: HCG Test Strip Concentration Prediction Network. Sensors 2025, 25, 5378. https://doi.org/10.3390/s25175378
Hu Q, Zhao J, Kan S, Shi Q, Wang N, Li J, Ma Z. 2SLOD-HCG: HCG Test Strip Concentration Prediction Network. Sensors. 2025; 25(17):5378. https://doi.org/10.3390/s25175378
Chicago/Turabian StyleHu, Qi, Jinshu Zhao, Shimin Kan, Qiang Shi, Ning Wang, Jiajian Li, and Zhifang Ma. 2025. "2SLOD-HCG: HCG Test Strip Concentration Prediction Network" Sensors 25, no. 17: 5378. https://doi.org/10.3390/s25175378
APA StyleHu, Q., Zhao, J., Kan, S., Shi, Q., Wang, N., Li, J., & Ma, Z. (2025). 2SLOD-HCG: HCG Test Strip Concentration Prediction Network. Sensors, 25(17), 5378. https://doi.org/10.3390/s25175378