High-Density Microfluidic Chip with Vertical Structure for Digital PCR
Abstract
1. Introduction
2. Materials and Methods
2.1. Chip Design and Fabrication
2.2. Microfluidic Chip Operation
2.3. PCR Conditions
2.4. Data Acquisition and Analysis
3. Results and Discussion
3.1. Effect of High-Density Vertical-Structure Design on Sensitivity and Dynamic Range of dPCR Chip
3.2. Sample Partition of dPCR Chip
3.3. Uniformity Analysis of the Chip
3.4. DNA Quantification Analysis by dPCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Whale, A.S.; Huggett, J.F.; Cowen, S.; Speirs, V.; Shaw, J.; Ellison, S.; Foy, C.A.; Scott, D.J. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2012, 40, 40–82. [Google Scholar] [CrossRef]
- Zhukov, D.V.; Khorosheva, E.M.; Khazaei, T.; Du, W.B.; Selck, D.A.; Shishkin, A.A.; Ismagilov, R.F. Microfluidic SlipChip device for multistep multiplexed biochemistry on a nanoliter scale. Lab Chip 2019, 19, 3200–3211. [Google Scholar] [CrossRef]
- Pomari, E.; Piubelli, C.; Perandin, F.; Bisoffi, Z. Digital PCR: A new technology for diagnosis of parasitic infections. Clin. Microbiol. Infect. 2019, 25, 1510–1516. [Google Scholar] [CrossRef]
- Kanagal-Shamanna, R. Digital PCR: Principles and Applications. Methods Mol. Biol. 2016, 1392, 43–50. [Google Scholar] [CrossRef]
- Debski, P.R.; Gewartowski, K.; Sulima, M.; Kaminski, T.S.; Garstecki, P. Rational Design of Digital Assays. Anal. Chem. 2015, 87, 8203–8209. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, N.; Wessel, T.; Marks, J. Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision. PLoS ONE 2015, 10, e0118833. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.N.; Fatsis-Kavalopoulos, N.; Windhager, J.; Tenje, M.; Andersson, D.I. Droplet microfluidics-based detection of rare antibiotic-resistant subpopulations in Escherichia coli from bloodstream infections. Sci. Adv. 2025, 11, eadv4558. [Google Scholar] [CrossRef]
- Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 2013, 8, 870–891. [Google Scholar] [CrossRef] [PubMed]
- Joensson, H.N.; Svahn, H.A. Droplet Microfluidics-A Tool for Single-Cell Analysis. Angew. Chem.-Int. Ed. 2012, 51, 12176–12192. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Raveshi, M.R.; Nosrati, R.; Bhardwaj, R.; Neild, A. Droplet splitting in microfluidics: A review. Phys. Fluids 2025, 37, 051304. [Google Scholar] [CrossRef]
- Zhang, L.X.; Parvin, R.; Fan, Q.H.; Ye, F.F. Emerging digital PCR technology in precision medicine. Biosens. Bioelectron. 2022, 211, 114344. [Google Scholar] [CrossRef]
- Quan, P.L.; Sauzade, M.; Brouzes, E. dPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef]
- Sreejith, K.R.; Ooi, C.H.; Jin, J.; Dao, D.V.; Nguyen, N.T. Digital polymerase chain reaction technology—Recent advances and future perspectives. Lab Chip 2018, 18, 3717–3732. [Google Scholar] [CrossRef] [PubMed]
- Bruijns, B.; van Asten, A.; Tiggelaar, R.; Gardeniers, H. Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors 2016, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Monshat, H.; Qian, J.J.; Pang, J.J.; Parvin, S.; Zhang, Q.J.; Wu, Z.W.; Lu, M. Integration of Nucleic Acid Amplification, Detection, and Melting Curve Analysis for Rapid Genotyping of Antimicrobial Resistance. IEEE Sens. J. 2022, 22, 7534–7541. [Google Scholar] [CrossRef]
- White, A.K.; Heyries, K.A.; Doolin, C.; VanInsberghe, M.; Hansen, C.L. High-Throughput Microfluidic Single-Cell Digital Polymerase Chain Reaction. Anal. Chem. 2013, 85, 7182–7190. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhao, S.H.; Liang, Y.; Hu, F.; Peng, N.C. A one-stage deep learning based method for automatic analysis of droplet-based digital PCR images. Analyst 2023, 148, 3065–3073. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, S.L.; Zheng, Y.J.; Zheng, X.N.; Lin, J.M. Droplet-based digital PCR (ddPCR) and its applications. Trac-Trends Anal. Chem. 2023, 158, 116897. [Google Scholar] [CrossRef]
- Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V.; et al. Droplet-based microfluidics in biomedical applications. Biofabrication 2022, 14, 022001. [Google Scholar] [CrossRef]
- Barea, J.S.; Lee, J.; Kang, D.K. Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. Micromachines 2019, 10, 412. [Google Scholar] [CrossRef]
- Shi, J.Y.; Zhang, Y.; Fan, Y.D.; Liu, Y.; Yang, M. Recent advances in droplet-based microfluidics in liquid biopsy for cancer diagnosis. Droplet 2024, 3, e92. [Google Scholar] [CrossRef]
- Dai, X.Q.; Cao, M.; Wang, Z.L. Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR. Biosensors 2025, 15, 36. [Google Scholar] [CrossRef]
- Men, Y.F.; Fu, Y.S.; Chen, Z.T.; Sims, P.A.; Greenleaf, W.J.; Huang, Y.Y. Digital Polymerase Chain Reaction in an Array of Femtoliter Polydimethylsiloxane Microreactors. Anal. Chem. 2012, 84, 4262–4266. [Google Scholar] [CrossRef]
- Xu, X.S.; He, N.Y. Application of adaptive pressure-driven microfluidic chip in thyroid function measurement. Chin. Chem. Lett. 2021, 32, 1747–1750. [Google Scholar] [CrossRef]
- Choi, J.W.; Jung, D.; Park, Y.M.; Bae, N.H.; Lee, S.J.; Rho, D.; Chung, B.G.; Lee, K.G. Microinjection molded microwell array-based portable digital PCR system for the detection of infectious respiratory viruses. Nano Converg. 2025, 12, 16. [Google Scholar] [CrossRef]
- Schuler, F.; Trotter, M.; Geltman, M.; Schwemmer, F.; Wadle, S.; Domínguez-Garrido, E.; López, M.; Cervera-Acedo, C.; Santibáñez, P.; von Stetten, F.; et al. Digital droplet PCR on disk. Lab Chip 2016, 16, 208–216. [Google Scholar] [CrossRef]
- Li, J.C.; Cheng, J.M.; Li, S.S.; Wu, J.J.; Li, J.W. Virtual Multiplexing Chamber-Based Digital PCR for Camel Milk Authentication Applications. Micromachines 2023, 14, 1619. [Google Scholar] [CrossRef]
- Hu, K.; Yin, W.H.; Wang, Y.; Xia, L.P.; Bai, Y.W.; Zhu, Q.Y.; Yin, J.X.; Mu, Y.; Jin, W. A fully automatic dPCR microfluidic system for detection of large-volume and low-abundance bacteria sample. Sens. Actuators B-Chem. 2024, 405, 135110. [Google Scholar] [CrossRef]
- Ning, Y.F.; Cui, X.; Yang, C.; Jing, F.X.; Bian, X.J.; Yi, L.; Li, G. A self-digitization chip integrated with hydration layer for low-cost and robust digital PCR. Anal. Chim. Acta 2019, 1055, 65–73. [Google Scholar] [CrossRef]
- Chi, J.Z.; Ding, L.; Wang, X.F.; Chen, X.Y.; Peng, C.; Xu, J.F. A platform for precise quantification of gene editing products based on microfluidic chip-based digital PCR. Anal. Methods 2024, 16, 4783–4793. [Google Scholar] [CrossRef]
- Shen, J.R.; Fan, J.X.; Zhao, Z.H.; Hou, Z.D.; Xu, G.W.; Wu, D.P. Chip-based digital PCR with large-field one-shot imaging for high-sensitivity nucleic acid quantification. Biosens. Bioelectron. 2025, 279, 117381. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, E.A.; Hong, J.W.; Quake, S.R.; Leadbetter, J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 2006, 314, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Low, H.Y.; Chan, S.J.; Soo, G.H.; Ling, B.; Tan, E.L. Clarity™ digital PCR system: A novel platform for absolute quantification of nucleic acids. Anal. Bioanal. Chem. 2017, 409, 1869–1875. [Google Scholar] [CrossRef]
- Shen, F.; Du, W.B.; Kreutz, J.E.; Fok, A.; Ismagilov, R.F. Digital PCR on a SlipChip. Lab Chip 2010, 10, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Yen, G.S.; Thompson, A.M.; Burnham, D.R.; Chiu, D.T. Self-Digitization of Samples into a High-Density Microfluidic Bottom-Well Array. Anal. Chem. 2013, 85, 10417–10423. [Google Scholar] [CrossRef]
- Sundberg, S.O.; Wittwer, C.T.; Gao, C.; Gale, B.K. Spinning Disk Platform for Microfluidic Digital Polymerase Chain Reaction. Anal. Chem. 2010, 82, 1546–1550. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Qiu, L.; Yu, B.W.; Xu, Y.N.; Gao, Y.B.; Pan, T.T.; Tian, Q.C.; Song, Q.; Jin, W.; Jin, Q.H.; et al. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip 2014, 14, 1176–1185. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Zhou, H.B.; Jia, C.P.; Jing, F.X.; Jin, Q.H.; Zhao, J.L.; Li, G. A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR. Sens. Actuators B-Chem. 2017, 245, 414–422. [Google Scholar] [CrossRef]
- Chen, S.Y.; Sun, Y.C.; Fan, F.F.; Chen, S.L.; Zhang, Y.R.; Zhang, Y.; Meng, X.L.; Lin, J.M. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trac-Trends Anal. Chem. 2022, 157, 116737. [Google Scholar] [CrossRef]
- Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.L.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005, 2, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Y.; Wang, Y.J.; Li, X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B 2019, 9, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, J.; Nakagawa, T.; Shiratori, A.; Shimazaki, Y.; Uematsu, C.; Kamahori, M.; Yokoi, T.; Harada, K.; Kohara, Y. KRAS genotyping by digital PCR combined with melting curve analysis. Sci. Rep. 2019, 9, 2626. [Google Scholar] [CrossRef] [PubMed]
Chip Structure | Number of Chambers | Total Volume (μL) | Lower Limit of Detection (Copies/μL) | Upper Limit of Detection (Copies/μL) | Dynamic Range |
---|---|---|---|---|---|
Vertical structure | 30,000 | 21.39 | 1.4 | 1.29 × 105 | 9.21 × 104 |
Planar structure | 20,000 | 14.26 | 2.1 | 1.24 × 105 | 5.9 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Si, H.; Xu, G.; Wu, D. High-Density Microfluidic Chip with Vertical Structure for Digital PCR. Sensors 2025, 25, 5379. https://doi.org/10.3390/s25175379
Sun P, Si H, Xu G, Wu D. High-Density Microfluidic Chip with Vertical Structure for Digital PCR. Sensors. 2025; 25(17):5379. https://doi.org/10.3390/s25175379
Chicago/Turabian StyleSun, Peng, Huaqing Si, Gangwei Xu, and Dongping Wu. 2025. "High-Density Microfluidic Chip with Vertical Structure for Digital PCR" Sensors 25, no. 17: 5379. https://doi.org/10.3390/s25175379
APA StyleSun, P., Si, H., Xu, G., & Wu, D. (2025). High-Density Microfluidic Chip with Vertical Structure for Digital PCR. Sensors, 25(17), 5379. https://doi.org/10.3390/s25175379