Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Anthropometric Data
2.2. Running Analysis
2.3. Devices for Comparison
2.4. Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations and Strength
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GCT | Ground Contact Time |
FT | Flight Time |
SD | Standard Deviation |
SL | Step Length |
VO | Vertical Oscillation |
References
- Carrier, B.; Barrios, B.; Jolley, B.D.; Navalta, J.W. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies 2020, 8, 70. [Google Scholar] [CrossRef]
- Boullosa, D.; Esteve-Lanao, J.; Casado, A.; Peyré-Tartaruga, L.A.; Da Rosa, R.G.; Del Coso, J. Factors affecting training and physical performance in recreational endurance runners. Sports 2020, 8, 35. [Google Scholar] [CrossRef]
- Yeh, H.P.; Stone, J.A.; Churchill, S.M.; Brymer, E.; Davids, K. Physical and emotional benefits of different exercise environments designed for treadmill running. Int. J. Environ. Res. Public Health 2017, 14, 752. [Google Scholar] [CrossRef]
- Junior, L.C.H.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-Analyses of the Effects of Habitual Running on Indices of Health in Physically Inactive Adults. Sports Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.S.; Román, L.; Hermos, V.M.S.; Pinillos, F.G. Características sociodemográficas del corredor popular veterano español. Kronos 2013, 12, 80–89. [Google Scholar] [CrossRef]
- Carrier, B.; Helm, M.M.; Cruz, K.; Barrios, B.; Navalta, J.W. Validation of Aerobic Capacity (VO2max) and Lactate Threshold in Wearable Technology for Athletic Populations. Technologies 2023, 11, 71. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; Howley, E.T.; Bassett, D.R.; Thompson, D.L.; Fitzhugh, E.C. Test of the classic model for predicting endurance running performance. Med. Sci. Sports Exerc. 2010, 42, 991–997. [Google Scholar] [CrossRef]
- Moore, I.S. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med. 2016, 46, 793–807. [Google Scholar] [CrossRef]
- Nielsen, R.; Ramskov, D.; Blacket, C.T.; Malisoux, L. Running-Related Injuries Among More Than 7000 Runners in 87 Different Countries: The Garmin-RUNSAFE Running Health Study. J. Orthop. Sports Phys. Ther. 2024, 54, 133–141. [Google Scholar] [CrossRef]
- Chang, H.; Cen, X. Can running technique modification benefit patellofemoral pain improvement in runners? A systematic review and metaanalysis. Int. J. Biomed. Eng. Technol. 2024, 45, 83–101. [Google Scholar] [CrossRef]
- Blyton, S.J.; Snodgrass, S.J.; Pizzari, T.; Birse, S.M.; Likens, A.D.; Edwards, S. The impact of previous musculoskeletal injury on running gait variability: A systematic review. Gait Posture 2023, 101, 124–133. [Google Scholar] [CrossRef]
- Lenhart, R.L.; Thelen, D.G.; Wille, C.M.; Chumanov, E.S.; Heiderscheit, B.C. Increasing running step rate reduces patellofemoral joint forces. Med. Sci. Sports Exerc. 2014, 46, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Koldenhoven, R.M.; Virostek, A.; DeJong, A.F.; Higgins, M.; Hertel, J. Increased contact time and strength deficits in runners with exercise-related lower leg pain. J. Athl. Train. 2020, 55, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Malisoux, L.; Gette, P.; Delattre, N.; Urhausen, A.; Theisen, D. Spatiotemporal and Ground-Reaction Force Characteristics as Risk Factors for Running-Related Injury: A Secondary Analysis of a Randomized Trial Including 800+ Recreational Runners. Am. J. Sports Med. 2022, 50, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Bonnaerens, S.; van Rossom, S.; Fiers, P.; van Caekenberghe, I.; Derie, R.; Kaneko, Y.; Frederick, E.; Vanwanseele, B.; Aerts, P.; DE Clercq, D.; et al. Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors. Med. Sci. Sports Exerc. 2022, 54, 1842–1849. [Google Scholar] [CrossRef]
- Lussiana, T.; Patoz, A.; Gindre, C.; Mourot, L.; Hébert-Losier, K. The implications of time on the ground on running economy: Less is not always better. J. Exp. Biol. 2019, 222, jeb.192047. [Google Scholar] [CrossRef]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running Technique is an Important Component of Running Economy and Performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef]
- Tartaruga, M.P.; Brisswalter, J.; Peyré-Tartaruga, L.A.; Ávila, A.O.V.; Alberton, C.L.; Coertjens, M.; Cadore, E.L.; Tiggemann, C.L.; Silva, E.M.; Kruel, L.F.M. The relationship between running economy and biomechanical variables in distance runners. Res. Q Exerc. Sport 2012, 83, 367–375. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Z.; Dai, B.; Fu, W. Effects of 12-week cadence retraining on impact peak, load rates and lower extremity biomechanics in running. PeerJ 2020, 8, e9813. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Latorre-Román, P.Á.; Mercado-Palomino, E.; Delgado-García, G.; Richards, J.; Soto-Hermoso, V.M. The effect of two retraining programs, barefoot running vs increasing cadence, on kinematic parameters: A randomized controlled trial. Scand. J. Med. Sci. Sports 2022, 32, 533–542. [Google Scholar] [CrossRef]
- Barton, C.J.; Bonanno, D.R.; Carr, J.; Neal, B.S.; Malliaras, P.; Franklyn-Miller, A.; Menz, H.B. Running retraining to treat lower limb injuries: A mixed-methods study of current evidence synthesised with expert opinion. Br. J. Sports Med. 2016, 50, 513–526. [Google Scholar] [CrossRef]
- Hensley, C.P.; Kontos, D.; Feldman, C.; Wafford, Q.E.; Wright, A.; Chang, A.H. Reliability and validity of 2-dimensional video analysis for a running task: A systematic review. Phys. Ther. Sport 2022, 58, 16–33. [Google Scholar] [CrossRef]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [Google Scholar] [CrossRef]
- Roche-Seruendo, L.E.; García-Pinillos, F.; Haicaguerre, J.; Bataller-Cervero, A.V.; Soto-Hermoso, V.M.; Latorre-Román, P. Lack of influence of muscular performance parameters on spatiotemporal adaptations with increased running velocity. J. Strength Cond. Res. 2018, 32, 409–415. [Google Scholar] [CrossRef]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef]
- Newsome, N.M.; Batrakoulis, A.; Camhi, S.M.; McAvoy, C.; Sansone, J.; Reed, R.M.S. 2025 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSM’s Health Fit. J. 2024, 28, 11–25. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, determining factors. Sports Med. Open 2015, 1, 8. [Google Scholar] [CrossRef]
- van Rassel, C.R.; Ajayi, O.O.; Sales, K.M.; Griffiths, J.K.; Fletcher, J.R.; Edwards, W.B.; MacInnis, M.J. Is Running Power a Useful Metric? Quantifying Training Intensity and Aerobic Fitness Using Stryd Running Power Near the Maximal Lactate Steady State. Sensors 2023, 23, 8729. [Google Scholar] [CrossRef]
- Rodríguez-Barbero, S.; González-Mohíno, F.; Ravé, J.M.G.; Rodrigo-Carranza, V.; Santos-García, D.J. Reliability and validity of three portable devices for quantifying spatiotemporal parameters in runners of different athletic abilities during treadmill running. Sports Biomech. 2024, 24, 1479–1494. [Google Scholar] [CrossRef]
- Clermont, C.A.; Duffett-Leger, L.; Hettinga, B.A.; Ferber, R. Runners’ Perspectives on ‘Smart’ Wearable Technology and Its Use for Preventing Injury. Int. J. Hum. Comput. Interact. 2020, 36, 31–40. [Google Scholar] [CrossRef]
- Janssen, M.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.; Vos, S. Understanding different types of recreational runners and how they use running-related technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef]
- Smith, C.P.; Fullerton, E.; Walton, L.; Funnell, E.; Pantazis, D.; Lugo, H. The validity and reliability of wearable devices for the measurement of vertical oscillation for running. PLoS ONE 2022, 17, e0277810. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Roche-Seruendo, L.E.; Marcén-Cinca, N.; Marco-Contreras, L.A.; Latorre-Román, P.A. Absolute Reliability and Concurrent Validity of the Stryd System for the Assessment of Running Stride Kinematics at Different Velocities. J. Strength Cond. Res. 2021, 35, 78–84. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Latorre-Román, P.Á.; Soto-Hermoso, V.M.; Párraga-Montilla, J.A.; Pantoja-Vallejo, A.; Ramírez-Campillo, R.; Roche-Seruendo, L.E.; Boullosa, D. Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis. PLoS ONE 2019, 14, e0222872. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-temporal Parameters of the Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Heath, M.R.; Khan, J.M.; Mackie, A.T.; Spitzer, E.; Fabricant, P.D. Reliability of 2-Dimensional Video Analysis in Adolescent Runners. HSS J. 2022, 18, 512–518. [Google Scholar] [CrossRef]
- Metzler, V.; Arampatzis, A.; Brüggemann, G.P. Influence of 2D and 3D body segment models on energy calculations during kinematic analysis of running. Eur. J. Appl. Physiol. 2002, 86, 337–341. [Google Scholar] [CrossRef]
- Martinez, C.; Garbett, S.; Hiromasa, K.; Jackson, R.; Miya, E.; Miya, M.; White, J.D.; Baum, B.S.; Reinking, M.F. Comparison of 2-D and 3-D Analysis of Running Kinematics and Actual Versus Predicted Running Kinetics. Int. J. Sports Phys. Ther. 2022, 17, 566–573. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Doğan, N.Ö. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Prisco, G.; Pirozzi, M.A.; Santone, A.; Esposito, F.; Cesarelli, M.; Amato, F.; Donisi, L. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics 2025, 15, 36. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Y.; Li, P.; Wang, L. Validity and reliability of inertial measurement units measurements for running kinematics in different foot strike pattern runners. Front. Bioeng. Biotechnol. 2022, 10, 1005496. [Google Scholar] [CrossRef]
- Watari, R.; Hettinga, B.; Osis, S.; Ferber, R. Validation of a torso-mounted accelerometer for measures of vertical oscillation and ground contact time during treadmill running. J. Appl. Biomech. 2016, 32, 306–310. [Google Scholar] [CrossRef]
- Andersen, C.H.; Nielsen, M.S. Reliability and Validity of Garmin Forerunner 735XT for Measuring Running Dynamics In-Field. Ph.D. Thesis, Sport Science Technology, Aalborg University, Aalborg, Denmark, 2017. [Google Scholar]
- Wundersitz, D.W.T.; Netto, K.J.; Aisbett, B.; Gastin, P.B. Validity of an upper-body-mounted accelerometer to measure peak vertical and resultant force during running and change-of-direction tasks. Sports Biomech. 2013, 12, 403–412. [Google Scholar] [CrossRef]
- Koska, D.; Gaudel, J.; Hein, T.; Maiwald, C. Validation of an inertial measurement unit for the quantification of rearfoot kinematics during running. Gait Posture 2018, 64, 135–140. [Google Scholar] [CrossRef]
9 km/h | 12 km/h | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Garmin (a) Mean (SD) | Stryd (b) Mean (SD) | Optogait (c) Mean (SD) | 2D Video Analysis (d) Mean (SD) | p-Value | Post Hoc | Garmin (a) Mean (SD) | Stryd (b) Mean (SD) | Optogait (c) Mean (SD) | 2D Video Analysis (d) Mean (SD) | p-Value | Post Hoc | |
Cadence (spm) | 162.10 (8.605) | 161.94 (8.326) | 162.00 (8.463) | 162.22 (8.524) | 0.172 | 169.48 (9.813) | 168.94 (9.607) | 169.38 (9.821) | 169.32 (9.715) | 0.009 | a > b *; b < c * | |
Step length (m) | 0.947 (0.654) | 0.946 (0.658) | 0.949 (0.653) | 0.947 (0.651) | 0.005 | b < c * | 1.186 (0.071) | 1.181 (0.073) | 1.186 (0.071) | 1.185 (0.071) | 0.001 | a > b ***; b < c ***; b < d ** |
Flight time (s) | 0.185 (0.543) | 0.184 (0.543) | 0.185 (0.544) | 0.185 (0.543) | 0.002 | a < b **; b > c **; b > d * | 0.204 (0.516) | 0.203 (0.516) | 0.204 (0.516) | 0.204 (0.517) | 0.001 | a > b ***; b < c ***; b < d *** |
Ground Contact time (s) | 0.283 (0.238) | 0.282 (0.237) | 0.282 (0.248) | 0.283 (0.239) | 0.095 | 0.259 (0.278) | 0.258 (0.280) | 0.258 (0.277) | 0.258 (0.281) | 0.009 | a > c * | |
Vertical oscillation (m) | 0.081 (0.012) | 0.080 (0.012) | 0.080 (0.012) | <0.001 | a > b ***; b < d * a > d ** | 0.083 (0.010) | 0.081 (0.010) | 0.082 (0.010) | 0.001 | a > b ***; b < d ** |
9 km/h | 12 km/h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r | R2 | ICC (2,1) | ICC (2,k) | IC (95%) | r | R2 | ICC (2,1) | ICC (2,k) | IC (95%) | ||
Cadence | Garmin vs. Stryd | 0.990 | 0.981 | 0.990 | 0.995 | (0.982–0.994) | 0.994 | 0.988 | 0.992 | 0.996 | (0.989–0.997) |
Garmin vs. Video analysis | 0.996 | 0.992 | 0.996 | 0.998 | (0.993–0.998) | 0.997 | 0.994 | 0.997 | 0.999 | (0.995–0.998) | |
Garmin vs. Optogait | 0.994 | 0.988 | 0.994 | 0.997 | (0.989–0.997) | 0.997 | 0.994 | 0.997 | 0.998 | (0.989–0.997) | |
Step length | Garmin vs. Stryd | 0.990 | 0.980 | 0.990 | 0.995 | (0.982–0.994) | 0.995 | 0.991 | 0.993 | 0.996 | (0.992–0.997) |
Garmin vs. Video analysis | 0.997 | 0.993 | 0.996 | 0.998 | (0.998–0.999) | 0.998 | 0.996 | 0.998 | 0.999 | (0.997–0.999) | |
Garmin vs. Optogait | 0.998 | 0.995 | 0.997 | 0.999 | (0.996–0.999) | 0.998 | 0.996 | 0.998 | 0.999 | (0.997–0.999) | |
Flight time | Garmin vs. Stryd | 1.0 | 1.0 | 1.0 | 1.0 | (1.0–1.0) | 1.0 | 1.0 | 1.0 | 1.0 | (1.0–1.0) |
Garmin vs. Video analysis | 1.0 | 0.999 | 1.0 | 1.0 | (1.0–1.0) | 1.0 | 1.0 | 1.0 | 1.0 | (1.0–1.0) | |
Garmin vs. Optogait | 1.0 | 1.0 | 1.0 | 1.0 | (1.0–1.0) | 1.0 | 0.999 | 1.0 | 1.0 | (0.999–1.0) | |
Contact time | Garmin vs. Stryd | 0.998 | 0.995 | 0.997 | 0.999 | (0.996–0.999) | 0.999 | 0.998 | 1.0 | 1.0 | (0.999–1.0) |
Garmin vs. Video analysis | 1.0 | 0.999 | 0.997 | 0.999 | (0.996–0.999) | 0.999 | 0.997 | 0.998 | 0.999 | (0.997–0.999) | |
Garmin vs. Optogait | 0.951 | 0.905 | 0.950 | 0.975 | (0.964–0.985) | 1.0 | 1.0 | 1.0 | 1.0 | (1.0–1.0) | |
Vertical Oscillation | Garmin vs. Stryd | 0.988 | 0.976 | 0.982 | 0.991 | (0.987–0.995) | 0.967 | 0.934 | 0.956 | 0.978 | (0.942–0.981) |
Garmin vs. Video analysis | 0.996 | 0.992 | 0.994 | 0.997 | (0.992–0.997) | 0.991 | 0.982 | 0.991 | 0.995 | (0.984–0.995) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Linares, J.C.; Martínez Salazar, C.; Párraga Montilla, J.A.; Latorre Román, P.Á. Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems. Sensors 2025, 25, 5407. https://doi.org/10.3390/s25175407
Cabrera-Linares JC, Martínez Salazar C, Párraga Montilla JA, Latorre Román PÁ. Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems. Sensors. 2025; 25(17):5407. https://doi.org/10.3390/s25175407
Chicago/Turabian StyleCabrera-Linares, José Carlos, Cristian Martínez Salazar, Juan Antonio Párraga Montilla, and Pedro Ángel Latorre Román. 2025. "Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems" Sensors 25, no. 17: 5407. https://doi.org/10.3390/s25175407
APA StyleCabrera-Linares, J. C., Martínez Salazar, C., Párraga Montilla, J. A., & Latorre Román, P. Á. (2025). Validation of Garmin HRM-Pro for Assessment of Spatiotemporal Parameters During Treadmill Running: Agreement with Three Motion Analysis Systems. Sensors, 25(17), 5407. https://doi.org/10.3390/s25175407