Research on the Response Characteristics of Various Inorganic Scintillators Under High-Dose-Rate Irradiation from Charged Particles
Abstract
1. Introduction
2. Experimental Details
2.1. Scintillator Selection
2.2. Construction of Experimental Apparatus
2.3. Irradiation Facility and Environment
2.4. Data Processing
3. Experiment and Discussion
3.1. Dose-Rate Response
3.1.1. Electron Experiments
3.1.2. Proton Experiments
3.2. Energy Response
3.2.1. Electron Experiments
3.2.2. Proton Experiments
3.3. Response Degradation by Prolonged Irradiation
3.4. Afterglows After Prolonged Irradiation
3.5. Discussion on Other Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LET | Linear Energy Transfer |
PMT | Photomultiplier Tube |
NA | Numerical Aperture |
References
- Slaba, T.C.; Rahmanian, S.; George, S.; Laramore, D.; Norbury, J.W.; Werneth, C.M.; Zeitlin, W. Validated Space Radiation Exposure Predictions from Earth to Mars during Artemis-I. NPJ Microgravity 2025, 11, 6. [Google Scholar] [CrossRef]
- Prelipcean, D.; Lerner, G.; Slipukhin, I.; Lucsanyi, D.; Sandberg, H.; Storey, J.; Martin-Holgado, P.; Romero-Maestre, A.; Morilla García, Y.; García Alía, R. Towards a Timepix3 Radiation Monitor for the Accelerator Mixed Radiation Field: Characterisation with Protons and Alphas from 0.6 MeV to 5.6 MeV. Appl. Sci. 2024, 14, 624. [Google Scholar] [CrossRef]
- Barth, J.L.; Dyer, C.S.; Stassinopoulos, E.G. Space, Atmospheric, and Terrestrial Radiation Environments. IEEE Trans. Nucl. Sci. 2003, 50, 466–482. [Google Scholar] [CrossRef]
- Wolfenden, J.; Alexandrova, A.S.; Jackson, F.; Mathisen, S.; Morris, G.; Pacey, T.H.; Kumar, N.; Yadav, M.; Jones, A.; Welsch, C.P. Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators. Sensors 2023, 23, 2248. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, T. Inorganic Scintillating Materials and Scintillation Detectors. Proc. Jpn. Acad. B 2018, 94, 75–97. [Google Scholar]
- Chao, A.; Zimmermann, F.; Oide, K.; Riegler, W.; Shiltsev, V. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 125–247. [Google Scholar]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 223–274. [Google Scholar]
- Park, H.M.; Joo, K.S. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications. Sensors 2016, 16, 919. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Zhu, R. Large Size LYSO Crystals for Future High Energy Physics Experiments. IEEE Trans. Nucl. Sci. 2005, 52, 3133–3140. [Google Scholar] [CrossRef]
- Khodyuk, I.V.; de Haas, J.T.M.; Dorenbos, P. Nonproportional Response Between 0.1–100 keV Energy by Means of Highly Monochromatic Synchrotron X-Rays. IEEE Trans. Nucl. Sci. 2010, 57, 1175–1181. [Google Scholar] [CrossRef]
- Zhu, R.Y. Radiation Damage in Scintillating Crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1998, 413, 297–311. [Google Scholar] [CrossRef]
- Beylin, D.M.; Korchagin, A.I.; Kuzmin, A.S.; Kurdadze, L.M.; Oreshkin, S.B.; Petrov, S.E.; Shwartz, B.A. Study of the Radiation Hardness of CsI(Tl) Scintillation Crystals. Nucl. Instrum. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 541, 501–515. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Zhu, R.-Y.; Kapustinsky, J.; Nelson, R.; Wang, Z. Proton-Induced Radiation Damage in Fast Crystal Scintillators. IEEE Trans. Nucl. Sci. 2017, 64, 665–672. [Google Scholar] [CrossRef]
- Alenkov, V.; Buzanov, O.; Dosovitskiy, G.; Egorychev, V.; Fedorov, A.; Golutvin, A.; Guz, Y.; Jacobsson, R.; Korjik, M.; Kozlov, D.; et al. Irradiation Studies of a Multi-doped Gd3Al2Ga3O12 Scintillator. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 916, 226–229. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A Measurement of the Light Yield of Common Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Casey, M.E.; Nutt, R.A. Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography. IEEE Trans. Nucl. Sci. 1986, 33, 460–463. [Google Scholar] [CrossRef]
- Farukhi, M.R.; Swinehart, C.F. Barium Fluoride as a Gamma Ray and Charged Particle Detector. IEEE Trans. Nucl. Sci. 1971, 18, 200–204. [Google Scholar] [CrossRef]
- Drobyshev, G.Y.; Fyodorov, A.A.; Korzhik, M.V.; Misevich, O.V.; Katchanov, V.A.; Peigneux, J.P. Optimization of a Lead-tungstate Crystal/Photodetector System for High-energy Physics. IEEE Trans. Nucl. Sci. 1995, 42, 341–344. [Google Scholar] [CrossRef]
- Moszynski, M.; Balcerzyk, M.; Kapusta, M.; Wolski, D.; Melcher, C.L. Large Size LSO:Ce and YSO:Ce Scintillators for 50 MeV Range γ-ray Detector. IEEE Trans. Nucl. Sci. 2000, 47, 1324–1328. [Google Scholar] [CrossRef]
- Izumi, S.; Kamata, S.; Satoh, K.; Miyai, H. High Energy X-ray Computed Tomography for Industrial Applications. IEEE Trans. Nucl. Sci. 1993, 40, 158–161. [Google Scholar] [CrossRef]
- Yanagida, T.; Takahashi, H.; Ito, T.; Kasama, D.; Enoto, T.; Sato, M.; Hirakuri, S.; Kokubun, M.; Makishima, K.; Yanagitani, T.; et al. Evaluation of Properties of YAG (Ce) Ceramic Scintillators. IEEE Trans. Nucl. Sci. 2005, 52, 1836–1841. [Google Scholar] [CrossRef]
- Kornilov, V. Effects of Dead Time and Afterpulses in Photon Detector on Measured Statistics of Stochastic radiation. J. Opt. Soc. Am. A 2014, 31, 7–15. [Google Scholar] [CrossRef]
- Suzuki, H.; Tombrello, T.A.; Melcher, C.L.; Schweitzer, J.S. Light Emission Mechanism of Lu2(SiO4)O:Ce. IEEE Trans. Nucl. Sci. 1993, 40, 380–383. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation Toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Interactions of Ions with Matter. Available online: http://www.srim.org/ (accessed on 10 June 2025).
- NIST ESTAR Database Program. Available online: https://physics.nist.gov/PhysRefData/Star/Text/ESTAR-u.html (accessed on 10 June 2025).
- Zhu, R.Y.; Stone, H.; Newman, H.; Zhou, T.Q.; Tan, H.R.; He, C.F. A Study on Radiation Damage in Doped BGO Crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1991, 302, 69–75. [Google Scholar] [CrossRef]
- Bobbink, G.J.; Engler, A.; Kraemer, R.W.; Nash, J.; Sutton, R.B. Study of Radiation Damage to Long BGO Crystals. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1984, 227, 470–477. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; Flechl, M.; et al. Measurements with Silicon Photomultipliers of Dose-Rate Effects in the Radiation Damage of Plastic Scintillator Tiles in the CMS Hadron Endcap Calorimeter. J. Instrum. 2020, 15, P06009. [Google Scholar] [CrossRef]
- Griscom, D.L.; Gingerich, M.E.; Friebele, E.J. Model for the Dose, Dose-rate and Temperature Dependence of Radiation-induced Loss in Optical Fibers. IEEE Trans. Nucl. Sci. 1994, 41, 523–527. [Google Scholar] [CrossRef]
- Hou, J.; Feng, Z.; Ma, G.; Zhang, W.; Meng, Z.; Li, Y. Research on the Intrinsic Sensing Performance of an Optical Fiber Dosimeter Based on Radiation-Induced Attenuation. Sensors 2025, 25, 3716. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, Z.; He, B.; Sun, W.; Gao, Y. Characteristics of a Miniature Fiber-Optic Inorganic Scintillator Detector for Electron-Beam Therapy Dosimetry. Sensors 2025, 25, 4243. [Google Scholar] [CrossRef]
- Bartle, C.M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K. Novel Methods for Measuring Afterglow in Developmental Scintillators for X-ray and Neutron Detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 651, 105–109. [Google Scholar] [CrossRef]
- Zghari, I.; El Hamzaoui, H.; Capoen, B.; Mady, F.; Benabdesselam, M.; Bouwmans, G.; Labat, D.; Ouerdane, Y.; Morana, A.; Girard, S.; et al. Effects of Measurement Temperature on Radioluminescence Processes in Cerium-Activated Silica Glasses for Dosimetry Applications. Sensors 2023, 23, 4785. [Google Scholar] [CrossRef]
- Wen, J.X.; Ma, G.; Yu, M.H.; Wu, Y.C.; Yan, Y.H.; Wang, S.Y.; Gao, H.Z.; Wang, L.S.; Zhou, Y.G.; LI, Q.; et al. Optimized Online Filter Stack Spectrometer for Ultrashort X-ray Pulses. Nucl Sci. Tech. 2024, 35, 48. [Google Scholar] [CrossRef]
- Belver, D.; Calvo, E.; Cuesta, C.; Gallego-Ros, A.; Gil-Botella, I.; Jiménez, S.; Lastoria, C.; Lux, T.; Palomares, C.; Redondo, D.; et al. Cryogenic R5912-20Mod Photomultiplier Tube Characterization for the ProtoDUNE Dual Phase Detector. J. Instrum. 2018, 13, T10006. [Google Scholar] [CrossRef]
- Diblen, F.; Buitenhuis, T.; Solf, T.; Rodrigues, P.; van der Graaf, E.; van Goethem, M.-J.; Brandenburg, S.; Dendooven, P. Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment. IEEE Trans. Nucl. Sci. 2017, 64, 1891–1896. [Google Scholar] [CrossRef]
- Wojcik, R.; Kross, B.; Majewski, S.; Seaford, B.; Weisenberger, A.G.; Zorn, C. Embedded Waveshifting Fiber Readout of Long Scintillators. IEEE Trans. Nucl. Sci. 1993, 40, 470–475. [Google Scholar] [CrossRef]
Label | Scintillator | Composition | Luminescence (nm) | Light Yield (ph/MeV) | Decay Time (ns) | Deliquescence | Refractive Index | Density (g/cm3) | Melting Point (°C) |
---|---|---|---|---|---|---|---|---|---|
1 | BaF2 | / | 300 | 12,000 | 650 | Slight | 1.5 | 4.89 | 1280 |
2 | GAGG(Ce) | Gd3Al2Ga3O12:Ce | 550 | 54,000 | 150 | No | 1.91 | 6.60 | 1850 |
3 | PWO | PbWO4 | 530 | 19,000 | 30 | No | 2.16 | 8.28 | 1123 |
4 | YSO(Ce) | Y2SiO5 | 420 | 30,000 | 60 | No | 1.8 | 4.45 | 2000 |
5 | CWO | CdWO4 | 475 | 13,000 | 14,000 | No | 2.3 | 7.90 | 1325 |
6 | LYSO(Ce) | (Lu1−xYx)2SiO5:Ce | 420 | 30,000 | 40 | No | 1.82 | 7.25 | 2050 |
7 | YAG(Ce) | Y3Al5O12:Ce | 550 | 14,000 | 70 | No | 1.82 | 4.56 | 1970 |
8 | CsI(Tl) | / | 550 | 56,000 | 1000 | Slight | 1.79 | 4.51 | 626 |
9 | LuAG(Pr) | Lu3Al5O12:Pr | 310 | 20,000 | 22 | No | 1.8 | 6.7 | 2010 |
10 | BGO | Bi4Ge3O12 | 480 | 8500 | 300 | No | 2.15 | 7.13 | 1050 |
Label | Scintillator | Fitting Result | R-Square |
---|---|---|---|
1 | BaF2 | 0.99988 | |
2 | GAGG(Ce) | 0.99988 | |
3 | PWO | 0.99857 | |
4 | YSO(Ce) | 0.99994 | |
5 | CWO | 0.99975 | |
6 | LYSO(Ce) | 0.99997 | |
7 | YAG(Ce) | 0.99987 | |
8 | CsI(Tl) | 0.99979 | |
9 | LuAG(Pr) | 0.99983 | |
10 | BGO | 0.99973 |
Label | Scintillator | Fitting Result | R-Square |
---|---|---|---|
1 | BaF2 | () | 0.99354 (0.97585) |
2 | GAGG(Ce) | () | 0.97580 (0.99383) |
3 | PWO | 0.99949 | |
4 | YSO(Ce) | () | 0.91681 (0.98539) |
5 | CWO | 0.99710 | |
6 | LYSO(Ce) | () | 0.93467 (0.98865) |
7 | YAG(Ce) | 0.99848 | |
8 | CsI(Tl) | 0.99868 | |
9 | LuAG(Pr) | 0.99892 | |
10 | BGO | 0.99916 |
Label | Scintillator | Fitting Result | R-Square | ||||
---|---|---|---|---|---|---|---|
A | B | S | P | Nmax | |||
1 | BaF2 | 101.57 | 19.744 | 6.8319 | 16.493 | 10,628 | 0.99982 |
2 | GAGG(Ce) | 96.081 | 9.5889 | 5.1127 | 14.062 | 18,677 | 0.99970 |
3 | PWO | 0.76312 | 159.09 | 1613.9 | 23.308 | 1471.8 | 0.99863 |
4 | YSO(Ce) | 86.292 | 10.293 | 5.0980 | 12.404 | 21,340 | 0.99967 |
5 | CWO | 66.556 | 62.313 | 15.317 | 20.184 | 11,227 | 0.99984 |
6 | LYSO(Ce) | 90.471 | 11.639 | 5.7694 | 14.210 | 18,296 | 0.99972 |
7 | YAG(Ce) | 77.364 | 25.956 | 7.7765 | 13.593 | 18,924 | 0.99978 |
8 | CsI(Tl) | 88.647 | 8.5608 | 5.2774 | 14.212 | 24,177 | 0.99959 |
9 | LuAG(Pr) | 85.369 | 42.223 | 11.468 | 21.155 | 15,418 | 0.99983 |
10 | BGO | 80.711 | 24.308 | 7.8043 | 14.369 | 13,097 | 0.99975 |
Label | Scintillator | Fitting Result | R-Square |
---|---|---|---|
1 | BaF2 | 0.99852 | |
2 | GAGG(Ce) | 0.98802 | |
3 | PWO | 0.98317 | |
4 | YSO(Ce) | 0.94095 | |
5 | CWO | 0.99407 | |
6 | LYSO(Ce) | 0.97304 | |
7 | YAG(Ce) | 0.98777 | |
8 | CsI(Tl) | 0.99762 | |
9 | LuAG(Pr) | 0.99894 | |
10 | BGO | 0.99600 |
Label | Scintillator | Fitting Result | R-Square |
---|---|---|---|
1 | BaF2 | 0.99822 | |
2 | GAGG(Ce) | 0.99702 | |
3 | PWO | 0.99687 | |
4 | YSO(Ce) | 0.99606 | |
5 | CWO | 0.99892 | |
6 | LYSO(Ce) | 0.99724 | |
7 | YAG(Ce) | 0.99848 | |
8 | CsI(Tl) | 0.99511 | |
9 | LuAG(Pr) | 0.99895 | |
10 | BGO | 0.99886 |
Label | Scintillator | Response (s−1) | Degradation Ratio (%) | |
---|---|---|---|---|
Before Experiment (Dose Rate at 52.0 rad/s) | After Experiment (Dose Rate at 50.3 rad/s) | |||
1 | BaF2 | 102,398 ± 738 | 73,368 ± 594 | 28.350 ± 0.714 |
2 | GAGG(Ce) | 131,627 ± 926 | 101,177 ± 1075 | 23.133 ± 1.030 |
3 | PWO | 25,805 ± 268 | 19,238 ± 210 | 25.450 ± 1.017 |
4 | YSO(Ce) | 81,483 ± 618 | 51,769 ± 405 | 36.467 ± 0.590 |
5 | CWO | 140,240 ± 907 | 11,3894 ± 872 | 18.787 ± 0.801 |
6 | LYSO(Ce) | 80,885 ± 571 | 65,639 ± 576 | 18.849 ± 0.917 |
7 | YAG(Ce) | 881,657 ± 5079 | 747,109 ± 3927 | 15.261 ± 0.584 |
8 | CsI(Tl) | 538,309 ± 3656 | 324,998 ± 2787 | 39.626 ± 0.605 |
9 | LuAG(Pr) | 434,704 ± 2724 | 329,388 ± 2198 | 24.227 ± 0.634 |
10 | BGO | 45,811 ± 357 | 25,413 ± 217 | 44.525 ± 0.541 |
Label | Model | Fitting Result | R-Square |
---|---|---|---|
1 | Power law | 0.97532 | |
2 | Single exponent | 0.89464 | |
3 | Double exponent | 0.97565 |
Label | Scintillator | Radiation-Free Response (s−1) | ||
---|---|---|---|---|
At ~1000 s After the Prolonged Electron Irradiation | At ~3500 s After the Prolonged Electron Irradiation | At ~100 s After the Proton Irradiation | ||
1 | BaF2 | 42 ± 9 | 28 ± 9 | 0 ± 3 |
2 | GAGG(Ce) | 617 ± 37 | 67 ± 11 | 2 ± 5 |
3 | PWO | 17 ± 7 | 15 ± 6 | −1 ± 4 |
4 | YSO(Ce) | 110 ± 14 | 66 ± 12 | 2 ± 4 |
5 | CWO | 15 ± 6 | 15 ± 6 | −2 ± 3 |
6 | LYSO(Ce) | 275 ± 29 | 147 ± 21 | 15 ± 9 |
7 | YAG(Ce) | 6438 ± 120 | 167 ± 17 | 14 ± 6 |
8 | CsI(Tl) | 74 ± 15 | 23 ± 7 | −1 ± 3 |
9 | LuAG(Pr) | 308 ± 29 | 28 ± 7 | 0 ± 5 |
10 | BGO | 19 ± 6 | 15 ± 6 | −1 ± 3 |
Label | Scintillator | Model | Fitting Result | R-Square |
---|---|---|---|---|
1 | LYSO(Ce) | Double exponent | 0.93537 | |
2 | YAG(Ce) | Single exponent | 0.99808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Ma, G.; Feng, Z.; Zhang, W.; Meng, Z.; Li, Y. Research on the Response Characteristics of Various Inorganic Scintillators Under High-Dose-Rate Irradiation from Charged Particles. Sensors 2025, 25, 5431. https://doi.org/10.3390/s25175431
Hou J, Ma G, Feng Z, Zhang W, Meng Z, Li Y. Research on the Response Characteristics of Various Inorganic Scintillators Under High-Dose-Rate Irradiation from Charged Particles. Sensors. 2025; 25(17):5431. https://doi.org/10.3390/s25175431
Chicago/Turabian StyleHou, Junyu, Ge Ma, Zhanzu Feng, Weiwei Zhang, Zong Meng, and Yuhe Li. 2025. "Research on the Response Characteristics of Various Inorganic Scintillators Under High-Dose-Rate Irradiation from Charged Particles" Sensors 25, no. 17: 5431. https://doi.org/10.3390/s25175431
APA StyleHou, J., Ma, G., Feng, Z., Zhang, W., Meng, Z., & Li, Y. (2025). Research on the Response Characteristics of Various Inorganic Scintillators Under High-Dose-Rate Irradiation from Charged Particles. Sensors, 25(17), 5431. https://doi.org/10.3390/s25175431