Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Synthesis of N-PCDs
2.4. Quantum Yield Calculations
2.5. Fluorometric Detection of Cr(VI)
2.6. Detection in Real-Water Samples
2.7. Computational Details
3. Results and Discussion
3.1. Morphology and Structural Characteristics of N-PCDs
3.2. Optical Properties of N-PCDs
3.3. Detection of Cr(VI)
3.4. Quantitative Detection of Cr(VI) Spiked in Real-Water Samples
3.5. Detection Mechanism of N-PCDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhigalenok, Y.; Tazhibayeva, A.; Kokhmetova, S.; Starodubtseva, A.; Kan, T.; Isbergenova, D.; Malchik, F. Hexavalent chromium at the crossroads of science, environment and public health. RSC Adv. 2025, 15, 21439–21464. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Benya, A.; Hota, S.; Kumar, M.S.; Singh, S. Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environ. Chem. Ecotoxicol. 2023, 5, 46–54. [Google Scholar] [CrossRef]
- Xie, S. Water contamination due to hexavalent chromium and its health impacts: Exploring green technology for Cr (VI) remediation. Green Chem. Lett. Rev. 2024, 17, 2356614. [Google Scholar] [CrossRef]
- Zaman, Z.; Majid, Z. Inflammatory bowel disease in Pakistan: Low prevalence or underdiagnosis? World J. Gastrointest. Pharmacol. Ther. 2024, 15, 99226. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Z.; Nian, N.; Zhang, P.; Ni, L. The speciation of heavy metal chromium in water environment by carbon quantum dots system. Water Air Soil Pollut. 2024, 235, 449. [Google Scholar] [CrossRef]
- Huang, J.; Nie, Y.; Yang, Y.; Long, X.; He, Y.; Zhan, L.; Huang, C. Chiral carbon dots as optical probes: Selective detection of acetylcholinesterase via enhanced photoluminescence. Anal. Chem. 2025, 97, 16142–16150. [Google Scholar] [CrossRef]
- Chen, T.; Jia, L.; Xu, S.; Shi, Y.; Jiang, J.; Ge, S.; Rezakazemi, M.; Huang, R. Lignin-derived carbon quantum dots: Advancing renewable nanomaterials for energy and photocatalysis. J. Energy Chem. 2025, 106, 271–290. [Google Scholar] [CrossRef]
- Ahmed, H.B.; Mikhail, M.M.; El-Shahat, M.; Emam, H.E. Clustering of carbon quantum dots from polysaccharides (Cellulose, Alginate, Chitosan) versus heterocyclic compounds: Synthesis, characterization and medical applications. Carbohyd. Polym. Technol. Appl. 2025, 9, 100738. [Google Scholar] [CrossRef]
- Mohammadi, S.; Sandoval-Pauker, C.; Dorado, Z.N.; Senftle, T.P.; Pankow, R.; Sharifan, H. Fluorescent sodium alginate hydrogel–carbon dots sensor for detecting perfluorooctanoic acid in potable water. Anal. Chem. 2025, 97, 10075–10084. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S. Lasing of carbon dots: Chemical design, mechanisms, and bright future. Chem 2024, 10, 134–171. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, T.; Wu, T.; Xu, J.; Zhu, Y.; Hu, J.; Yang, H.; Xu, H.; Kan, Y.; Zhao, L. Microwave-assisted hydrothermal synthesis of nitrogen-rich biomass carbon dots (CDs): B, N co-doped with enhanced luminescence and dual mode afterglow emitting properties. Carbon 2025, 244, 120670. [Google Scholar] [CrossRef]
- Huo, X.; He, Y.; Ma, S.; Jia, Y.; Yu, J.; Li, Y.; Cheng, Q. Green synthesis of carbon dots from grapefruit and its fluorescence enhancement. J. Nanomater. 2020, 2020, 8601307. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Hoffman, J.; Morgiel, J.; Moscicki, T.; Stobinski, L.; Szymanski, Z.; Malolepszy, A. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials 2021, 14, 729. [Google Scholar] [CrossRef]
- Huang, H.; Li, S.; Chen, B.; Wang, Y.; Shen, Z.; Qiu, M.; Pan, H.; Wang, W.; Wang, Y.; Li, X. Endoplasmic reticulum-targeted polymer dots encapsulated with ultrasonic synthesized near-infrared carbon nanodots and their application for in vivo monitoring of Cu2+. J. Colloid Interface Sci. 2022, 627, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhang, H.; Yu, N.; Sun, Z.; Chen, L. Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and optoelectronic devices. Sensor. Actuat. B-Chem. 2021, 329, 129263. [Google Scholar] [CrossRef]
- Jeong, G.; Park, C.H.; Yi, D.; Yang, H. Green synthesis of carbon dots from spent coffee grounds via ball-milling: Application in fluorescent chemosensors. J. Cleaner Prod. 2023, 392, 136250. [Google Scholar] [CrossRef]
- Luo, B.; Yang, H.; Zhou, B.; Ahmed, S.M.; Zhang, Y.; Liu, H.; Liu, X.; He, Y.; Xia, S. Facile synthesis of luffa sponge activated carbon fiber based carbon quantum dots with green fluorescence and their application in Cr(VI) determination. ACS Omega 2020, 5, 5540–5547. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N.; Sagadevan, S.; Raut, N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. Chemosphere 2023, 345, 140471. [Google Scholar] [CrossRef]
- Sun, S.; Guo, S.; Qin, Q.; Liao, Y.; Li, M.; Du, F. Box–Behnken design optimizing sugarcane bagasse-based nitrogen-doped carbon quantum dots preparation and application in ferric ion detection. Chemosensors 2022, 10, 10110453. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, Y.; Ning, J.; Hu, G.; Zhang, Q.; Hou, Y.; Zhou, Y. Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 281, 121597. [Google Scholar] [CrossRef]
- Jessy Mercy, D.; Kiran, V.; Thirumalai, A.; Harini, K.; Girigoswami, K.; Girigoswami, A. Rice husk assisted carbon quantum dots synthesis for amoxicillin sensing. Results Chem. 2023, 6, 101219. [Google Scholar] [CrossRef]
- Hu, G.; Ge, L.; Li, Y.; Mukhtar, M.; Shen, B.; Yang, D.; Li, J. Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid Interface Sci. 2020, 579, 96–108. [Google Scholar] [CrossRef]
- Bhatt, S.; Bhatt, M.; Kumar, A.; Vyas, G.; Gajaria, T.; Paul, P. Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Colloids Surf. B Biointerfaces 2018, 167, 126–133. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, Z.; Zhou, J.; He, M.; Jiang, Q.; Li, S.; Ma, Y.; Liu, M.; Luo, S. Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int. J. Biol. Macromol. 2019, 129, 1081–1089. [Google Scholar] [CrossRef]
- Long, X.; Lu, Y.L.; Guo, H.; Tang, Y.P. Recent advances in solid residues resource utilization in traditional Chinese medicine. ChemistrySelect 2023, 8, e202300383. [Google Scholar] [CrossRef]
- Han, X.; Song, K.; Yu, H.; Zhou, X.; Guo, J. Extraction and characterisation of kudzu root residue lignin based on deep eutectic solvents. Phytochem. Anal. 2024, 35, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; She, L.; Guo, F.; Jia, F.; Zhang, L.; Ai, Z.; Liu, X. Ball-milled zero-valent iron with formic acid for effectively removing Cu(II)-EDTA accomplished by EDTA ligands oxidative degradation and Cu(II) removal. J. Hazard. Mater. 2024, 465, 133009. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, A.; Hagos, M.; RamaDevi, D.; Basavaiah, K.; Belachew, N. Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: Green synthesis, mercury(II) ion sensing, and live cell imaging, and Live Cell Imaging. ACS Omega 2020, 5, 3889–3898. [Google Scholar] [CrossRef]
- Liu, S.; Cui, J.; Huang, J.; Tian, B.; Jia, F.; Wang, Z. Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2019, 206, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jing, C.; Wang, B. A label-free fluorescent sensor based on Si,N-codoped carbon quantum dots with enhanced sensitivity for the determination of Cr(VI). Materials 2022, 15, 1733. [Google Scholar] [CrossRef]
- Pooja, D.; Singh, L.; Thakur, A.; Kumar, P. Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-free chemo probe for chromium detection in water. Sens. Actuat. B-Chem. 2019, 283, 363–372. [Google Scholar]
- Wang, S.; Huo, X.; Zhao, H.; Dong, Y.; Cheng, Q.; Li, Y. One-pot green synthesis of N,S co-doped biomass carbon dots from natural grapefruit juice for selective sensing of Cr(VI). Chem. Phys. Impact 2022, 5, 100112. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, X.; Shi, Y.; Li, Z.; Feng, Z. Nitrogen-doped carbon dot mediated fluorescence on–off assay for highly sensitive detection of I− and Br− ions. New J. Chem. 2018, 42, 14332–14339. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym. 2015, 127, 101–109. [Google Scholar] [CrossRef]
- Ghosh, A.; Boro, B.; Chowdhury, S.S.; Ranjan, R.; Dasgupta, N.; Ranjan, S. Ultrasensitive and selective detection of chromium(VI) using biowaste derived fluorescent nanoprobes of hydrothermally synthesized carbon-dots. ChemistrySelect 2024, 9, e202404198. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Yang, J.; Dong, Y.; Guo, S.; Cheng, Q.; Li, Y.; Liu, S. Preparation of multicolor biomass carbon dots based on solvent control and their application in Cr(VI) detection and advanced anti-counterfeiting. ACS Omega 2023, 8, 6550–6558. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Huang, X.; Luo, Y.; Yuan, H.; Ren, T.; Li, X.; Xu, D.; Guo, X.; Wu, Y. Fluorescent chitosan-based hydrogel incorporating titanate and cellulose nanofibers modified with carbon dots for adsorption and detection of Cr(VI). Chem. Eng. J. 2021, 407, 127050. [Google Scholar] [CrossRef]
- Liu, Z.; Mo, Z.; Niu, X.; Yang, X.; Jiang, Y.; Zhao, P.; Liu, N.; Guo, R. Highly sensitive fluorescence sensor for mercury(II) based on boron- and nitrogen-co-doped graphene quantum dots. J. Colloid Interface Sci. 2020, 566, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Adotey, E.K.; Amouei Torkmahalleh, M.; Hopke, P.K.; Balanay, M.P. N,Zn-doped fluorescent sensor based on carbon dots for the subnanomolar detection of soluble Cr(VI) ions. Sensors 2023, 23, 1632. [Google Scholar] [CrossRef]
- Lu, Q.; Lin, W.; Tang, L.; Wang, S.; Chen, X.; Huang, B. A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J. Mater. Sci. 2014, 50, 611–619. [Google Scholar] [CrossRef]
- Cao, M.; Li, Y.; Zhao, Y.; Shen, C.; Zhang, H.; Huang, Y. A novel method for the preparation of solvent-free, microwave-assisted and nitrogen-doped carbon dots as fluorescent probes for chromium(vi) detection and bioimaging. RSC Adv. 2019, 9, 8230–8238. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Bao, Q.; Wu, C.; Hu, M.; Chen, Y.; Wang, L.; Chen, W. Carbon dots derived from Poria cocos polysaccharide as an effective “on-off” fluorescence sensor for chromium (VI) detection. J. Pharm. Anal. 2022, 12, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Nan, H.; Peng, H.; Wang, Y.; Dong, Z.; Zhang, Z.; Cao, X.; Liu, Y. A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchem. J. 2023, 190, 108725. [Google Scholar] [CrossRef]
- Goswami, J.; Rohman, S.S.; Guha, A.K.; Basyach, P.; Sonowal, K.; Borah, S.P.; Saikia, L.; Hazarika, P. Phosphoric acid assisted synthesis of fluorescent carbon dots from waste biomass for detection of Cr(VI) in aqueous media. Mater. Chem. Phys. 2022, 286, 126133. [Google Scholar] [CrossRef]
- Yu, J.; Kalimuthu, R.; Liu, X.; Zhang, W.; Tan, Y.; Yan, K.; Ye, S.; Feng, J. Unveiling the quenching mechanism of metal ions using solvent-driven N, S-doped carbon quantum dots. Opt. Mater. 2025, 162, 116948. [Google Scholar] [CrossRef]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
Sample | Spiked (μM) | Found Conc. (μM) | %Recovery | %RSD (n = 3) |
---|---|---|---|---|
Tap water | 25 | 24.93 | 99.73 | 1.66 |
50 | 50.04 | 100.09 | 2.03 | |
100 | 100.02 | 100.02 | 0.60 | |
Pond water | 25 | 24.67 | 98.69 | 1.16 |
50 | 50.73 | 101.46 | 0.31 | |
100 | 100.01 | 100.01 | 0.57 | |
River water | 25 | 25.32 | 101.27 | 1.57 |
50 | 49.96 | 99.92 | 2.12 | |
100 | 100.18 | 100.18 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Zhou, Z. Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water. Sensors 2025, 25, 5554. https://doi.org/10.3390/s25175554
Zheng Z, Zhou Z. Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water. Sensors. 2025; 25(17):5554. https://doi.org/10.3390/s25175554
Chicago/Turabian StyleZheng, Ziyuan, and Zhengwei Zhou. 2025. "Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water" Sensors 25, no. 17: 5554. https://doi.org/10.3390/s25175554
APA StyleZheng, Z., & Zhou, Z. (2025). Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water. Sensors, 25(17), 5554. https://doi.org/10.3390/s25175554