Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus and Procedures
2.3. Fatigue Protocol
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cayless, S.M. Slip, Trip and Fall Accidents: Relationship to Building Features and Use of Coroners’ Reports in Ascribing Cause. Appl. Ergon. 2001, 32, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Startzell, J.K.; Owens, D.A.; Mulfinger, L.M.; Cavanagh, P.R. Stair Negotiation in Older People: A Review. J. Am. Geriatr. Soc. 2000, 48, 567–580. [Google Scholar] [CrossRef]
- Jacobs, J.V. A Review of Stairway Falls and Stair Negotiation: Lessons Learned and Future Needs to Reduce Injury. Gait Posture 2016, 49, 159–167. [Google Scholar] [CrossRef]
- McFadyen, B.J.; Winter, D.A. An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent. J. Biomech. 1988, 21, 733–744. [Google Scholar] [CrossRef]
- Winter, D. Human Balance and Posture Control during Standing and Walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Karamanidis, K.; Arampatzis, A. Altered Control Strategy between Leading and Trailing Leg Increases Knee Adduction Moment in the Elderly While Descending Stairs. J. Biomech. 2011, 44, 706–711. [Google Scholar] [CrossRef]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. The Demands of Stair Descent Relative to Maximum Capacities in Elderly and Young Adults. J. Electromyogr. Kinesiol. 2008, 18, 218–227. [Google Scholar] [CrossRef]
- Hsiao, H.; Simeonov, P. Preventing Falls from Roofs: A Critical Review. Ergonomics 2001, 44, 537–561. [Google Scholar] [CrossRef]
- Swaen, G.M.H.; Van Amelsvoort, L.G.P.M.; Bültmann, U.; Kant, I.J. Fatigue as a Risk Factor for Being Injured in an Occupational Accident: Results from the Maastricht Cohort Study. Occup. Env. Med. 2003, 60 (Suppl. S1), i88–i92. [Google Scholar] [CrossRef]
- Yu, C.; Zhan, J.; Xu, L.; Zhou, J.; Fu, W. Motor Control Performance-Related Modulation of Beta-Band EEG–sEMG Coherence Differs between General and Local Muscular Exercise-Induced Fatigue. Eur. J. Appl. Physiol. 2025, 125, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
- Lew, F.L.; Qu, X. Effects of Multi-Joint Muscular Fatigue on Biomechanics of Slips. J. Biomech. 2014, 47, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Rapp Van Roden, E.A.; George, J.; Milan, L.T.; Bove, R.T. Evaluation of Injury Patterns and Accident Modality in Step Ladder-Related Injuries. Appl. Ergon. 2021, 96, 103492. [Google Scholar] [CrossRef]
- Hunt, M.A.; Hatfield, G.L. Ankle and Knee Biomechanics during Normal Walking Following Ankle Plantarflexor Fatigue. J. Electromyogr. Kinesiol. 2017, 35, 24–29. [Google Scholar] [CrossRef]
- Mizrahi, J.; Verbitsky, O.; Isakov, E.; Daily, D. Effect of Fatigue on Leg Kinematics and Impact Acceleration in Long Distance Running. Hum. Mov. Sci. 2000, 19, 139–151. [Google Scholar] [CrossRef]
- Wang, L.; Ma, W.; Zhu, W.; Zhai, L.; Sun, Y. Effects of Experimentally Induced Lower Limb Muscle Fatigue on Healthy Adults’ Gait: A Systematic Review. Bioengineering 2025, 12, 225. [Google Scholar] [CrossRef]
- Longpré, H.S.; Potvin, J.R.; Maly, M.R. Biomechanical Changes at the Knee after Lower Limb Fatigue in Healthy Young Women. Clin. Biomech. 2013, 28, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Qu, X. Effects of Lower-Limb Muscular Fatigue on Stair Gait. J. Biomech. 2015, 48, 4059–4064. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The Condition for Dynamic Stability. J. Biomech. 2005, 38, 25. [Google Scholar] [CrossRef]
- Predicting Slips and Falls Considering Required and Available Friction (Topic)–1–All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/summary/ba979230-3bab-4963-8c41-dac46fe83edd-0140a32994/relevance/1 (accessed on 7 January 2025).
- Liu, J.; Qu, X. Postural Stability and Risk of Slips in Lifting Tasks: Effects of Load Weight and Load Knowledge. Int. J. Ind. Ergon. 2025, 105, 103675. [Google Scholar] [CrossRef]
- Huang, R.-F.; Yick, K.-L.; Shi, Q.-Q.; Liu, L.; Li, C.-H. Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis. J. Funct. Morphol. Kinesiol. 2025, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.; van Cingel, R.E. How to Determine Leg Dominance: The Agreement between Self-Reported and Observed Performance in Healthy Adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Lu, Z.; Mao, C.; Tan, Y.; Liu, T.; Li, X.; Li, Z.; Zhu, W.; Sun, Y. The Impact of Backpack Load on Adolescent’s Stair Descent Gait. J. Biomech. 2024, 166, 112029. [Google Scholar] [CrossRef]
- Barkley, J.E.; Lepp, A. Cellular Telephone Use during Free-Living Walking Significantly Reduces Average Walking Speed. BMC Res. Notes 2016, 9, 195. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Croce, U.D.; Leardini, A. Position and Orientation in Space of Bones during Movement: Anatomical Frame Definition and Determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Kowalski, E.; Pelegrinelli, A.R.M.; Ryan, N.; Dervin, G.; Lamontagne, M. Muscle Activity and Biomechanics While Descending a Staircase after Total Knee Arthroplasty: A Study Comparing Different Posterior Stabilized and Medial Ball-and-Socket Designs. J. Arthroplast. 2024, 39, 3076–3083.e2. [Google Scholar] [CrossRef]
- Barbieri, F.A.; Gobbi, L.T.B.; Lee, Y.J.; Pijnappels, M.; Van Dieën, J.H. Effect of Triceps Surae and Quadriceps Muscle Fatigue on the Mechanics of Landing in Stepping down in Ongoing Gait. Ergonomics 2014, 57, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.A.; Dos Santos, P.C.R.; Vitório, R.; Van Dieën, J.H.; Gobbi, L.T.B. Effect of Muscle Fatigue and Physical Activity Level in Motor Control of the Gait of Young Adults. Gait Posture 2013, 38, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wei, S.; Zhong, Y.; Fu, W.; Li, L.; Liu, Y. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing-Stance Transition. Med. Sci. Sports Exerc. 2015, 47, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Prince, F.; Stergiou, P.; Powell, C. Medial-Lateral and Anterior-Posterior Motor Responses Associated with Centre of Pressure Changes in Quiet Standing. Neurosci. Res. Commun. 1993, 12, 141–148. [Google Scholar]
- Biomechanics and Motor Control of Human Movement | Wiley Online Books. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470549148 (accessed on 4 September 2024).
- Bosse, I.; Oberländer, K.D.; Savelberg, H.H.; Meijer, K.; Brüggemann, G.-P.; Karamanidis, K. Dynamic Stability Control in Younger and Older Adults during Stair Descent. Hum. Mov. Sci. 2012, 31, 1560–1570. [Google Scholar] [CrossRef]
- Zheng, H.; Song, Q.; Zhang, C.; Sun, W.; Mao, M.; Zhang, X.; Zhu, X.; Ma, G.; Mao, D. The Effect of Text-Based Math Task on Dynamic Stability Control during Stair Descent (ID: BM-D-20-00079R3). J. Biomech. 2020, 113, 110088. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. One-Dimensional Statistical Parametric Mapping in Python. Comput. Methods Biomech. Biomed. Engin. 2012, 15, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Bouffard, J.; Srinivasan, D.; Ghayourmanesh, S.; Cantú, H.; Begon, M.; Côté, J.N. Changes in Movement Variability and Task Performance during a Fatiguing Repetitive Pointing Task. J. Biomech. 2018, 76, 212–219. [Google Scholar] [CrossRef]
- Zachazewski, J.E.; Riley, P.O.; Krebs, D.E. Biomechanical Analysis of Body Mass Transfer during Stair Ascent and Descent of Healthy Subjects. J. Rehabil. Res. Dev. 1993, 30, 412–422. [Google Scholar]
- Bohm, S.; Mersmann, F.; Bierbaum, S.; Dietrich, R.; Arampatzis, A. Cognitive Demand and Predictive Adaptational Responses in Dynamic Stability Control. J. Biomech. 2012, 45, 2330–2336. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M.; Ruina, A. Energetic Consequences of Walking like an Inverted Pendulum: Step-to-Step Transitions. Exerc. Sport. Sci. Rev. 2005, 33, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Young, P.M.M.; Wilken, J.M.; Dingwell, J.B. Dynamic Margins of Stability during Human Walking in Destabilizing Environments. J. Biomech. 2012, 45, 1053–1059. [Google Scholar] [CrossRef]
- Gallinger, T.L.; Fletcher, J.R.; MacIntosh, B.R. Mechanisms of Reduced Plantarflexor Function in Cerebral Palsy: Smaller Triceps Surae Moment Arm and Reduced Muscle Force. J. Biomech. 2020, 110, 109959. [Google Scholar] [CrossRef]
- Shi, F.; Rymer, W.Z.; Son, J. Mechanomyogram Amplitude vs. Isometric Ankle Plantarflexion Torque of Human Medial Gastrocnemius Muscle at Different Ankle Joint Angles. J. Electromyogr. Kinesiol. 2021, 61, 102609. [Google Scholar] [CrossRef]
- Young, P.M.M.; Dingwell, J.B. Voluntary Changes in Step Width and Step Length during Human Walking Affect Dynamic Margins of Stability. Gait Posture 2012, 36, 219–224. [Google Scholar] [CrossRef]
- Bauby, C.E.; Kuo, A.D. Active Control of Lateral Balance in Human Walking. J. Biomech. 2000, 33, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Yocum, D.; Weinhandl, J.T.; Fairbrother, J.T.; Zhang, S. Wide Step Width Reduces Knee Abduction Moment of Obese Adults during Stair Negotiation. J. Biomech. 2018, 75, 138–146. [Google Scholar] [CrossRef]
- Parijat, P.; Lockhart, T.E. Effects of Quadriceps Fatigue on the Biomechanics of Gait and Slip Propensity. Gait Posture 2008, 28, 568–573. [Google Scholar] [CrossRef]
- Tresch, M.C.; Jarc, A. The Case for and against Muscle Synergies. Curr. Opin. Neurobiol. 2009, 19, 601–607. [Google Scholar] [CrossRef]
- Latash, M.L. The Bliss (Not the Problem) of Motor Abundance (Not Redundancy). Exp. Brain Res. 2012, 217, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Liassou, C. The Effect of Selective Muscle Fatigue on Sagittal Lower Limb Kinematics and Muscle Activity during Level Running. J. Orthop. Sports Phys. Ther. 2009, 39, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T. Effects of General and Local Fatigue on Postural Control: A Review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef]
- Hortobágyi, T.; DeVita, P. Altered Movement Strategy Increases Lower Extremity Stiffness during Stepping down in the Aged. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54, B63–B70. [Google Scholar] [CrossRef]
- DeVita, P.; Helseth, J.; Hortobagyi, T. Muscles Do More Positive than Negative Work in Human Locomotion. J. Exp. Biol. 2007, 210, 3361–3373. [Google Scholar] [CrossRef]
- Boyer, K.A.; Nigg, B.M. Muscle Activity in the Leg Is Tuned in Response to Impact Force Characteristics. J. Biomech. 2004, 37, 1583–1588. [Google Scholar] [CrossRef]
Dependent Measures | Pre-Fatigue | Post-Fatigue | p | |
---|---|---|---|---|
Spatiotemporal parameters | First double-support phase (% of gait cycle) | 0.14 (0.03) | 0.14 (0.02) | 0.571 |
Single-support phase (% of gait cycle) | 0.36 (0.03) | 0.37 (0.03) | 0.251 | |
Second double-support phase (% of gait cycle) | 0.12 (0.02) | 0.13 (0.03) | 0.005 * | |
Swing phase (% of gait cycle) | 0.37 (0.02) | 0.36 (0.03) | 0.030 * | |
Cadence (steps/s) | 3.77 (0.27) | 3.81 (0.28) | 0.645 | |
Walking speed (m/s) | 0.92 (0.08) | 0.92 (0.10) | 0.960 | |
Step width (m) | 0.11 (0.04) | 0.12 (0.03) | p < 0.001 * | |
Step length (m) | 0.49 (0.03) | 0.48 (0.02) | 0.414 | |
Left Hip joint angle (°) | Right-foot release | 21.32 (4.36) | 22.78 (8.96) | 0.312 |
Left Knee joint angle (°) | Right-foot release | −36.36 (5.24) | −41.11 (6.15) | 0.005 * |
Left Ankle joint angle (°) | Right-foot release | 88.42 (4.55) | 91.39 (3.44) | 0.001 * |
Left Hip joint moment (N·m/kg) | Right-foot release | −0.25 (0.12) | −0.30 (0.20) | 0.386 |
Left Knee joint moment (N·m/kg) | Right-foot release | 1.27 (0.33) | 1.25 (0.26) | 0.796 |
Left Ankle joint moment (N·m/kg) | Right-foot release | −1.12 (0.21) | −1.24 (0.26) | 0.032 * |
MoS-AP(m) | Left-foot release | −0.13 (0.04) | −0.23 (0.17) | 0.002 * |
RCOF | Right-foot release | −0.13 (0.03) | −0.16 (0.02) | 0.014 * |
Left-foot release | 0.20 (0.05) | 0.23 (0.04) | 0.031 * | |
Right-foot release | 0.15 (0.02) | 0.17 (0.02) | 0.021 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ma, W.; Zhu, W.; Xie, Q.; Sun, Y. Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates. Sensors 2025, 25, 5570. https://doi.org/10.3390/s25175570
Wang L, Ma W, Zhu W, Xie Q, Sun Y. Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates. Sensors. 2025; 25(17):5570. https://doi.org/10.3390/s25175570
Chicago/Turabian StyleWang, Liangsen, Wenyue Ma, Wenfei Zhu, Qian Xie, and Yuliang Sun. 2025. "Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates" Sensors 25, no. 17: 5570. https://doi.org/10.3390/s25175570
APA StyleWang, L., Ma, W., Zhu, W., Xie, Q., & Sun, Y. (2025). Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates. Sensors, 25(17), 5570. https://doi.org/10.3390/s25175570