Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems
Abstract
1. Introduction
2. Related Work
3. Analyses of Frequency Offset Effect
4. Upgraded CFO-Resistant Random Access Sequence Design and Detection
4.1. Upgraded Random Access Sequence Design
4.2. Upgraded Random Access Sequence Detection Mechanism
4.3. Timing Estimation in the Presence of CFO
4.3.1. Integer CFO Case ()
4.3.2. Non-Integer CFO Case ()
4.3.3. Robust Timing Estimation Procedure
Algorithm 1 The detection and timing estimation algorithm for random access sequence |
Input: received signal , random access sequence , threshold , maximum integer CFO |
Output: detection indicator , estimated timing |
1: Calculate and using (25), and using (27), and using (26). |
2: if then , |
3: else |
4: calculate using (37), using (41) |
5: if then , |
6: else |
7: d = 1 |
8: for i = 0 to 3 do |
9: if then |
10: identify index () where , |
11: and calculate using (42) |
12: break |
13: end if |
14: end for |
15: end if |
16: end if |
5. Root Selection Algorithm
Algorithm 2 Root selection algorithm in the presence of CFO |
Initialization: N, K, I, s = 1, , , , , r = 1, i = 1, j = 1 |
1: While do |
2: if then , r = 1, i = 1, j = 1, , , |
3: else |
4: if or then r = r + 1 |
5: else |
6: if i=1 then , j = j + 1, , i = i + 1, r = r + 1 |
7: else |
8: if there exists such that then r = r + 1 |
9: else |
10: , index = 0 |
11: for k = 1 to j-1 do |
12: if then |
13: |
14: if for all (, ), |
15: and then |
16: , , i = i + 1, r = r + 1, index = 1 |
17: break |
18: end if |
19: end if |
20: end for |
21: if index = 0 and then |
22: , j = j + 1, , i = i + 1, r = r + 1 |
23: end if |
24: end if |
25: end if |
26: end if |
27: end if |
28: end while |
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Le, T.T.T.; Hassan, N.U.; Chen, X.; Alouini, M.-S.; Han, Z.; Yuen, C. A Survey on Random Access Protocols in Direct-Access LEO Satellite-Based IoT Communication. IEEE Commun. Surv. Tutor. 2025, 27, 426–462. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Ding, R.-X.; Xu, Y.-H.; Yu, G.; Zhou, W.; Zhou, D. Swin Transformer with Spatial and Local Context Augmentation for Enhanced Semantic Segmentation of Remote Sensing Images. IEEE Open J. Signal Process. 2025, 6, 608–620. [Google Scholar] [CrossRef]
- Le, T.T.T. A Hybrid Random Access Approach for RIS-Aided Direct Satellite Networks. In Proceedings of the 2025 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–14 January 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Suo, L.; Ma, H.; Jiao, W.; Liu, X. Job-Deadline-Guarantee-Based Joint Flow Scheduling and Routing Scheme in Data Center Networks. Sensors 2024, 24, 216. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Jiao, W.; Xu, C. Two-Phase Efficient Channel Estimation for Passive Double-RIS Assisted MIMO Systems. IEEE Signal Process. Lett. 2024, 31, 1660–1664. [Google Scholar] [CrossRef]
- Liu, W.; Jiao, W.; Zhang, X.; Qi, C. Joint Beamforming and Reflection Design for Maximizing Energy Efficiency of RIS-assisted ISAC Systems. IEEE Trans. Wireless Commun. 2025. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, R.; Ai, B.; Lian, Z.; Zeng, L.; Niyato, D.; Peng, Y. Deep Reinforcement Learning for Energy Efficiency Maximization in RSMA-IRS-Assisted ISAC System. IEEE Trans. Veh. Technol. 2025. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, J.; Huang, Y.; Cao, T.; Ji, T.; Yu, H.; Wang, W.; Ding, R. Beam Domain Random Access for NB-IoT Integrated LEO Satellite Communications. IEEE Internet Things J. 2025, 12, 13907–13921. [Google Scholar] [CrossRef]
- Centenaro, M.; Costa, C.E.; Granelli, F.; Sacchi, C.; Vangelista, L. A Survey on Technologies, Standards and Open Challenges in Satellite IoT. IEEE Commun. Surv. Tutor. 2021, 23, 1693–1720. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W. Preamble Structure and Timing Advance Method for Satellite IoT. IEEE Wirel. Commun. Lett. 2024, 13, 1088–1092. [Google Scholar] [CrossRef]
- Amatetti, C.; Alsenwi, M.; Chougrani, H.; Vanelli-Coralli, A.; Palattella, M.R. A Novel Twofold Approach to Enhance NB-IoT MAC Procedure in NTN. IEEE J. Sel. Areas Commun. 2024, 42, 1453–1464. [Google Scholar] [CrossRef]
- Li, X.; Suo, L.; Jiao, W.; Liu, X.; Liu, Y. Cooperative Overbooking-Based Resource Allocation and Application Placement in UAV-Mounted Edge Computing for Internet of Forestry Things. Drones 2025, 9, 22. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and Challenges in Intelligent Remote Sensing Satellite Systems. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Yang, T.; Jiao, J.; Wu, S.; Lu, R.; Zhang, Q. Grant Free Age-Optimal Random Access Protocol for Satellite-Based Internet of Things. IEEE Trans. Commun. 2022, 70, 3947–3961. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, S.; Cho, Y.S. New Random Access Preamble Design Technique for Non-Terrestrial Networks with High Doppler Shift. IEEE Trans. Veh. Technol. 2025, 74, 11579–11584. [Google Scholar] [CrossRef]
- Tello-Oquendo, L.; Ahmed, F.; Lin, C.-H.; Lin, S.-C.; Lee, M. Enabling LEO Satellite Vertical Handover for Massive 6G IoT Random Access. In Proceedings of the 2024 IEEE International Conference on Communications (ICC), Denver, CO, USA, 9–13 June 2024; pp. 4293–4298. [Google Scholar] [CrossRef]
- TS 36.211; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. 3rd Generation Partnership Project: Valbonne, France, 2025.
- TS 38.211; NR; Physical Channels and Modulation. 3rd Generation Partnership Project: Valbonne, France, 2025.
- He, W.; Jiang, Y.; Zhao, L. Random Access Preamble Design and Detection for Mobile Satellite Communication Systems. In Proceedings of the 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 7–9 August 2024; pp. 1163–1168. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Jiang, M. Preamble Design and Detection Based on Sequence Selection Pattern for Random Access in Non-Terrestrial Networks. IEEE Commun. Lett. 2024, 28, 2357–2361. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, T. Random access sequence set design in wireless cellular communication networks. Phys. Commun. 2023, 56, 101953. [Google Scholar] [CrossRef]
- Sun, T.; Zhen, L.; Lu, G.; Yu, K. Random Access Preamble Design and Detection for 5G Remote Health via Satellite Communications. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of the Korea, 6–9 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhen, L.; Sun, T.; Lu, G.; Yu, K.; Ding, R. Preamble Design and Detection for 5G Enabled Satellite Random Access. IEEE Access 2020, 8, 49873–49884. [Google Scholar] [CrossRef]
- Khan, T.A.; Lin, X. Random Access Preamble Design for 3GPP Non-terrestrial Networks. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.-M. Design of Large Doppler Shift Mitigation in NTN Scenarios Through a Paired Index Based PRACH Transmission Scheme. In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Caus, M.; Shaat, M. PRACH Signal Design and Detection for LEO Satellite Systems with Imperfect UE Positioning. In Proceedings of the 2024 27th International Workshop on Smart Antennas (WSA), Dresden, Germany, 17–19 March 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Song, Y.; Yin, L.; Liu, Y.; Yang, H. Design of A Novel NTN PRACH Format Combining Zadoff-Chu and Golden Sequences. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Zhao, L. Preamble Design for LEO Satellite Communication System. In Proceedings of the 2023 28th Asia Pacific Conference on Communications (APCC), Sydney, Australia, 19–22 November 2023; pp. 42–47. [Google Scholar] [CrossRef]
- Wang, S.; Xue, G.; Zhang, Z.; Guo, Q. Performance Evaluation of Dual Strategies for Enhancing NB-IoT Access in NTN. In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Jeong, J.; Hong, D. Two-Stage Preamble Detector for LEO Satellite-Based NTN IoT Random Access. IEEE Trans. Veh. Technol. 2023, 72, 14443–14455. [Google Scholar] [CrossRef]
- Hua, M.; Xu, Z. Physical random access signal design for 5G mobile satellite communication systems. Phys. Commun. 2022, 55, 101908. [Google Scholar] [CrossRef]
Root | Results |
---|---|
1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109, 113,117,121,125,129,133,137,141,145,149,153,157,161,165,169,173,177,181,185,189, 193,197,201,205,209,213,217,221,225,229,233,237,241,245,249,253 | |
3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111, 115,119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,183,187,191, 195,199,203,207,211,215,219,223,227,231,235,239,243,247,251,255 |
Root | Results |
---|---|
1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109,113, 117,121,125,129,133,137,141,145,149,153,157,161,165,169,173,177,181,185,189,193,197, 201,205,209,213,217,221,225,229,233,237,241,245,249,253,257,261,265,269,273,277,281, 285,289,293,297,301,305,309,313,317,321,325,329,333,337,341,345,349,353,357,361,365, 369,373,377,381,385,389,393,397,401,405,409,413,417,421,425,429,433,437,441,445,449, 453,457,461,465,469,473,477,481,485,489,493,497,501,505,509 | |
3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115, 119,123,127,131,135,139,143,147,151,155,159,163,167,171,175,179,183,187,191,195,199, 203,207,211,215,219,223,227,231,235,239,243,247,251,255,259,263,267,271,275,279,283, 287,291,295,299,303,307,311,315,319,323,327,331,335,339,343,347,351,355,359,363,367, 371,375,379,383,387,391,395,399,403,407,411,415,419,423,427,431,435,439,443,447,451, 455,459,463,467,471,475,479,483,487,491,495,499,503,507,511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, M.; Wu, Z.; Zhang, C.; Xu, Z.; Liu, X.; Zhou, W. Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems. Sensors 2025, 25, 5602. https://doi.org/10.3390/s25175602
Hua M, Wu Z, Zhang C, Xu Z, Liu X, Zhou W. Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems. Sensors. 2025; 25(17):5602. https://doi.org/10.3390/s25175602
Chicago/Turabian StyleHua, Min, Zhongqiu Wu, Cong Zhang, Zeyang Xu, Xiaoming Liu, and Wen Zhou. 2025. "Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems" Sensors 25, no. 17: 5602. https://doi.org/10.3390/s25175602
APA StyleHua, M., Wu, Z., Zhang, C., Xu, Z., Liu, X., & Zhou, W. (2025). Random Access Preamble Design for 6G Satellite–Terrestrial Integrated Communication Systems. Sensors, 25(17), 5602. https://doi.org/10.3390/s25175602