Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position
Abstract
Highlights
- High-intensity variables (e.g., accelerations, explosive distance) were identified in early quarters and declined progressively, with 5–8 components explaining 61–73% of the variance.
- Position-specific profiles emerged: guards exhibited frequent accelerations and direction changes, forwards engaged in mixed-intensity efforts, and centers experienced a high number of impacts and jumps.
- LPS and MEMS data, combined with PCA, enable basketball teams to identify the most important workload parameters and specific profiles based on contextual factors.
- Findings support individualized training prescriptions and injury prevention by understanding the dynamic nature of basketball demands during competition.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Instruments
2.4. Procedures
2.4.1. Ultra-Wide Band System
2.4.2. Microelectromechanical System
2.5. Variables
2.6. Data Processing and Statistical Analysis
3. Results
3.1. PCA by Total Game and Quarters
3.2. PCA by Playing Position
3.3. Practical Interpretation of PCA
4. Discussion
5. Conclusions
Author Contributions
Funding

Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANGT | Adidas Next-Generation Tournament |
| BMI | Body Mass Index |
| EPTS | Electronic Performance and Tracking Systems |
| G | Gravitational Force (9.8 m/s2) |
| GPS | Global Positioning System |
| Hz | Hertz |
| IMU | Inertial Measurement Unit |
| KMO | Kaiser–Meyer–Olkin |
| LPS | Local Positioning System |
| MDS | Most Demanding Scenarios |
| MEMS | Microelectromechanical Sensors |
| PCA | Principal Component Analysis |
| PC | Principal Component |
| Q1 | First Quarter |
| Q2 | Second Quarter |
| Q3 | Third Quarter |
| Q4 | Fourth Quarter |
| sRPE | Session Rating of Perceived Exertion |
| TDOA | Time Difference of Arrival |
| UWB | Ultra-Wide Band |
References
- García-Cuevas, P.; Pérez-Serrano, P.; Jiménez-Saiz, S.; Bustamante-Sánchez, A. Cuantificación de La Carga Interna y Externa En El Baloncesto Femenino de Élite. Una Revisión Sistemática. E-Balonmano Com J. Sports Sci. 2025, 21, 447–458. [Google Scholar] [CrossRef]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Leal, D.M.; Alcaraz, P.E. Training Load and Match-Play Demands in Basketball Based on Competition Level: A Systematic Review. PLoS ONE 2020, 15, e0229212. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Martinho, D.V.; Clemente, F.M.; Ángel-Gomez, M.; Rebelo, A.; Field, A.; Santos, C.C.; Gouveia, É.R.; Afonso, J.; Sarmento, H. Physical, Physiological, Technical and Tactical Responses According to the Playing Position in Male Basketball: A Systematic Scoping Review. J. Hum. Kinet. 2025, 96, 5–35. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.; Salazar, H.; Fox, J.L. Differences in the Most Demanding Scenarios of Basketball Match-Play Between Game Quarters and Playing Positions in Professional Players. Montenegrin J. Sports Sci. Med. 2022, 11, 15–28. [Google Scholar] [CrossRef]
- Salazar, H.; Ujakovic, F.; Plesa, J.; Lorenzo, A.; Alonso-Pérez-Chao, E. Do Elite Basketball Players Maintain Peak External Demands Throughout the Entire Game? Sensors 2024, 24, 4318. [Google Scholar] [CrossRef]
- García, F.; Schelling, X.; Castellano, J.; Martín-García, A.; Pla, F.; Vázquez-Guerrero, J. Comparison of the Most Demanding Scenarios During Different in-Season Training Sessions and Official Matches in Professional Basketball Players. Biol. Sport 2021, 39, 237–244. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Ayala, F.; Garcia, F.; Sampaio, J. The Most Demanding Scenarios of Play in Basketball Competition from Elite Under-18 Teams. Front. Psychol. 2020, 11, 552. [Google Scholar] [CrossRef]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef]
- Seçkin, A.Ç.; Ateş, B.; Seçkin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Dellaserra, C.L.; Gao, Y.; Ransdell, L. Use of Integrated Technology in Team Sports: A Review of Opportunities, Challenges, and Future Directions for Athletes. J. Strength Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef]
- Pérez-Chao, E.A.; Portes, R.; Gómez, M.Á.; Parmar, N.; Lorenzo, A.; Jiménez-Sáiz, S.L. A Narrative Review of the Most Demanding Scenarios in Basketball: Current Trends and Future Directions. J. Hum. Kinet. 2023, 89, 231–245. [Google Scholar] [CrossRef]
- Tuttle, M.C.; Power, C.J.; Dalbo, V.J.; Scanlan, A.T. Intensity Zones and Intensity Thresholds Used to Quantify External Load in Competitive Basketball: A Systematic Review. Sports Med. 2024, 54, 2571–2596. [Google Scholar] [CrossRef] [PubMed]
- García, F.; Vázquez-Guerrero, J.; Castellano, J.; Casals, M.; Schelling, X. Differences in Physical Demands Between Game Quarters and Playing Positions on Professional Basketball Players During Official Competition. J. Sports Sci. Med. 2020, 19, 256–263. [Google Scholar] [PubMed]
- Portes, R.; Navarro Barragán, R.M.; Calleja-González, J.; Gómez-Ruano, M.Á.; Jiménez Sáiz, S.L. Physical Persistency Across Game Quarters and During Consecutive Games in Elite Junior Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 5658. [Google Scholar] [CrossRef]
- Sosa-Marin, C.; Alonso-Pérez-Chao, E.; Trapero, J.; Ribas, C.; Leicht, A.S.; Lorenzo, A.; Jiménez, S.L. External Physical Demands During Official Under-18 Basketball Games: Consideration of Overtime Periods. J. Hum. Kinet. 2024, 94, 181–190. [Google Scholar] [CrossRef]
- Piedra, A.; Peña, J.; Caparrós, T. Monitoring Training Loads in Basketball: A Narrative Review and Practical Guide for Coaches and Practitioners. Strength Cond. J. 2021, 43, 12–35. [Google Scholar] [CrossRef]
- Bourdas, D.I.; Travlos, A.K.; Souglis, A.; Gofas, D.C.; Stavropoulos, D.; Bakirtzoglou, P. Basketball Fatigue Impact on Kinematic Parameters and 3-Point Shooting Accuracy: Insights Across Players’ Positions and Cardiorespiratory Fitness Associations of High-Level Players. Sports 2024, 12, 63. [Google Scholar] [CrossRef]
- Pernigoni, M.; Ferioli, D.; Calleja-González, J.; Sansone, P.; Tessitore, A.; Scanlan, A.T.; Conte, D. Match-Related Fatigue in Basketball: A Systematic Review. J. Sports Sci. 2024, 42, 1727–1758. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Fernández-Valdés, B.; Jones, B.; Moras, G.; Reche, X.; Sampaio, J. Changes in Physical Demands Between Game Quarters of U18 Elite Official Basketball Games. PLoS ONE 2019, 14, e0221818. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Jones, B.; Fernández-Valdés, B.; Moras, G.; Reche, X.; Sampaio, J. Physical Demands of Elite Basketball during an Official U18 International Tournament. J. Sports Sci. 2019, 37, 2530–2537. [Google Scholar] [CrossRef]
- Pérez-Chao, E.; Gómez, M.-Á.; Lisboa, P.; Trapero, J.; Jiménez, S.L.; Lorenzo, A. Fluctuations in External Peak Demands Across Quarters During Basketball Games. Front. Physiol. 2022, 13, 868009. [Google Scholar] [CrossRef] [PubMed]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Bastida-Castillo, A.; Hernández-Belmonte, A.; García-Rubio, J.; Nakamura, F.Y.; Ibáñez, S.J. Impact of Contextual Factors on External Load During a Congested-Fixture Tournament in Elite U’18 Basketball Players. Front. Psychol. 2019, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Gómez-Carmona, C.D.; Oliva-Lozano, J.M.; Ibáñez, S.J.; Pino-Ortega, J. Quarter’s External Workload Demands of Basketball Referees During a European Youth Congested-Fixture Tournament. Int. J. Perform. Anal. Sport 2020, 20, 432–444. [Google Scholar] [CrossRef]
- Nabli, M.A.; Ben Abdelkrim, N.; Fessi, M.S.; DeLang, M.D.; Moalla, W.; Chamari, K. Sport Science Applied to Basketball Refereeing: A Narrative Review. Physician Sportsmed. 2019, 47, 365–374. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; López-Sierra, P.; Lorenzo, A.; Feu, S. Kinematic and Neuromuscular Ranges of External Loading in Professional Basketball Players During Competition. Appl. Sci. 2023, 13, 11936. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; Gómez-Carmona, C.D.; Mancha-Triguero, D. Individualization of Intensity Thresholds on External Workload Demands in Women’s Basketball by K-Means Clustering: Differences Based on the Competitive Level. Sensors 2022, 22, 324. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; Gómez-Carmona, C.D.; López-Sierra, P.; Feu, S. Intensity Thresholds for External Workload Demands in Basketball: Is Individualization Based on Playing Positions Necessary? Sensors 2024, 24, 1146. [Google Scholar] [CrossRef]
- Yang, K. Quarterly Fluctuations in External and Internal Loads among Professional Basketball Players. Front. Physiol. 2024, 15, 1419097. [Google Scholar] [CrossRef]
- Ujaković, F.; Salazar, H.; Pleša, J.; Svilar, L. Elite Basketball Game External Load Varies Between Different Teams and Competition. Kinesiology 2024, 56, 145–152. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Suarez-Arrones, L.; Casamichana Gómez, D.; Rodas, G. Comparing External Total Load, Acceleration and Deceleration Outputs in Elite Basketball Players Across Positions During Match Play. Kinesiology 2018, 50, 228–234. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; Gantois, P.; Rico-González, M.; García-Rubio, J.; Ortega, J.P. Profile of Accelerations and Decelerations in Young Basketball Players. Appl. Sci. 2024, 14, 4120. [Google Scholar] [CrossRef]
- Vuckovic, I.; Rátgéber, L.; Nagy, D.; Čabarkapa, D.; Mikic, M.; Kukić, F. Load Dynamics in Basketball: Insights from Wins and Losses. Montenegrin J. Sports Sci. Med. 2026, 15. Available online: https://www.mjssm.me/?sekcija=abstract&artid=306 (accessed on 23 August 2025).
- Fox, J.L.; Salazar, H.; Garcia, F.; Scanlan, A.T. Peak External Intensity Decreases Across Quarters During Basketball Games. Montenegrin J. Sports Sci. Med. 2021, 10, 25–29. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Gómez-Carmona, C.D.; Nakamura, F.Y.; Rojas-Valverde, D. Setting Kinematic Parameters That Explain Youth Basketball Behavior: Influence of Relative Age Effect According to Playing Position. J. Strength Cond. Res. 2022, 36, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Svilar, L.; Castellano, J.; Jukic, I.; Casamichana, D. Positional Differences in Elite Basketball: Selecting Appropriate Training-Load Measures. Int. J. Sports Physiol. Perform. 2018, 13, 947–952. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Rico-González, M. Training Design, Performance Analysis and Talent Identification—A Systematic Review about the Most Relevant Variables through the Principal Component Analysis in Soccer, Basketball and Rugby. Int. J. Environ. Res. Public Health 2021, 18, 2642. [Google Scholar] [CrossRef]
- Parmar, N.; James, N.; Hearne, G.; Jones, B. Using Principal Component Analysis to Develop Performance Indicators in Professional Rugby League. Int. J. Perform. Anal. Sport 2018, 18, 938–949. [Google Scholar] [CrossRef]
- Salazar, H.; Castellano, J.; Svilar, L. Differences in External Load Variables between Playing Positions in Elite Basketball Match-Play. J. Hum. Kinet. 2020, 75, 257–266. [Google Scholar] [CrossRef]
- Scanlan, A.T.; Tucker, P.S.; Dascombe, B.J.; Berkelmans, D.M.; Hiskens, M.I.; Dalbo, V.J. Fluctuations in Activity Demands Across Game Quarters in Professional and Semiprofessional Male Basketball. J. Strength Cond. Res. 2015, 29, 3006–3015. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Pino-Ortega, J.; Gómez-Carmona, C.D.; Rico-González, M. A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science. Int. J. Environ. Res. Public Health 2020, 17, 8712. [Google Scholar] [CrossRef]
- Weaving, D.; Dalton, N.E.; Black, C.; Darrall-Jones, J.; Phibbs, P.J.; Gray, M.; Jones, B.; Roe, G.A.B. The Same Story or a Unique Novel? Within-Participant Principal-Component Analysis of Measures of Training Load in Professional Rugby Union Skills Training. Int. J. Sports Physiol. Perform. 2018, 13, 1175–1181. [Google Scholar] [CrossRef]
- Ato, M.; López-García, J.J.; Benavente, A. Un Sistema de Clasificación de Los Diseños de Investigación En Psicología. An. Psicol./Ann. Psychol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- Hellmann, F.; Verdi, M.; Schlemper Junior, B.R.; Caponi, S. 50th Anniversary of the Declaration of Helsinki: The Double Standard Was Introduced. Arch. Med. Res. 2014, 45, 600–601. [Google Scholar] [CrossRef] [PubMed]
- Bastida-Castillo, A.; Gómez-Carmona, C.; De la Cruz-Sánchez, E.; Reche-Royo, X.; Ibáñez, S.; Pino Ortega, J. Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Appl. Sci. 2019, 9, 939. [Google Scholar] [CrossRef]
- Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F.M.; Pino-Ortega, J. A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors 2020, 20, 2271. [Google Scholar] [CrossRef]
- Ridolfi, M.; Vandermeeren, S.; Defraye, J.; Steendam, H.; Gerlo, J.; De Clercq, D.; Hoebeke, J.; De Poorter, E. Experimental Evaluation of UWB Indoor Positioning for Sport Postures. Sensors 2018, 18, 168. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and Dynamic Reliability of WIMU PROTM Accelerometers According to Anatomical Placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar] [CrossRef]
- Granero-Gil, P.; Bastida-Castillo, A.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; de la Cruz Sánchez, E.; Pino-Ortega, J. Accuracy, Inter-Unit Reliability and Comparison between GPS and UWB-Based Tracking Systems for Measuring Centripetal Force during Curvilinear Locomotion. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2020, 235, 237–248. [Google Scholar] [CrossRef]
- Reina, M.; García-Rubio, J.; Esteves, P.T.; Ibáñez, S.J. How External Load of Youth Basketball Players Varies According to Playing Position, Game Period and Playing Time. Int. J. Perform. Anal. Sport 2020, 20, 917–930. [Google Scholar] [CrossRef]
- Sampaio, J.; Drinkwater, E.J.; Leite, N.M. Effects of Season Period, Team Quality, and Playing Time on Basketball Players’ Game-Related Statistics. Eur. J. Sport Sci. 2010, 10, 141–149. [Google Scholar] [CrossRef]
- Sampaio, J.; Janeira, M.; Ibáñez, S.; Lorenzo, A. Discriminant Analysis of Game-Related Statistics Between Basketball Guards, Forwards and Centres in Three Professional Leagues. Eur. J. Sport Sci. 2006, 6, 173–178. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson: Harlow, UK, 2014; ISBN 978-1-292-02131-7. [Google Scholar]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef]
- Sansone, P.; Ceravolo, A.; Tessitore, A. External, Internal, Perceived Training Loads and Their Relationships in Youth Basketball Players Across Different Positions. Int. J. Sports Physiol. Perform. 2022, 17, 249–255. [Google Scholar] [CrossRef]
- Pinto, F.; Ferreira, A. Effects of Acute Fatigue on the Functional Performance of Basketball Players. E-Balonmano Com J. Sports Sci. 2025, 21, 363–372. [Google Scholar] [CrossRef]
- Espasa-Labrador, J.; Fort-Vanmeerhaeghe, A.; Montalvo, A.M.; Carrasco-Marginet, M.; Irurtia, A.; Calleja-González, J. Monitoring Internal Load in Women’s Basketball via Subjective and Device-Based Methods: A Systematic Review. Sensors 2023, 23, 4447. [Google Scholar] [CrossRef]
- Villarejo-García, D.H.; Puche-Ortuño, D.; Gómez-Carmona, C.D.; Pino-Ortega, J. Multivariate Analysis of Performance Indicators in Elite Women’s Futsal: A Principal Component Approach to Understanding Game Dynamics. Int. J. Sports Sci. Coach. 2025. [Google Scholar] [CrossRef]
- Pernigoni, M.; Ferioli, D.; Butautas, R.; La Torre, A.; Conte, D. Assessing the External Load Associated with High-Intensity Activities Recorded During Official Basketball Games. Front. Psychol. 2021, 12, 668194. [Google Scholar] [CrossRef]
- Leser, R.; Baca, A.; Ogris, G. Local Positioning Systems in (Game) Sports. Sensors 2011, 11, 9778–9797. [Google Scholar] [CrossRef]
- Hoppe, M.W.; Baumgart, C.; Polglaze, T.; Freiwald, J. Validity and Reliability of GPS and LPS for Measuring Distances Covered and Sprint Mechanical Properties in Team Sports. PLoS ONE 2018, 13, e0192708. [Google Scholar] [CrossRef] [PubMed]
- Qarouach, A.; Sansone, P.; Pernigoni, M.; Kreivyte, R.; Conte, D. Inside the Defensive Playbook: Pick-and-Roll Tactical Adjustments Impact the External and Internal Loads During Small-Sided Games in Female Basketball Players. Int. J. Sports Physiol. Perform. 2024, 19, 1367–1373. [Google Scholar] [CrossRef]
- Castillo, D.; Raya-González, J.; Clemente, F.M.; Conte, D.; Rodríguez-Fernández, A. The Effects of Defensive Style and Final Game Outcome on the External Training Load of Professional Basketball Players. Biol. Sport 2021, 38, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.; Leser, R.; Gonçalves, B.; Calleja-Gonzalez, J.; Baca, A.; Sampaio, J. Effect of Defensive Pressure on Movement Behaviour During an Under-18 Basketball Game. Int. J. Sports Med. 2014, 35, 743–748. [Google Scholar] [CrossRef]
- Gómez Carmona, C.D.; Bastida Castillo, A.; García-Rubio, J.; Pino Ortega, J.; Ibañez, S.J. Influencia del resultado en las demandas de carga externa en baloncesto masculino de formación durante la competición oficial. Cuad. Psicol. Deporte 2019, 19, 262–274. [Google Scholar] [CrossRef]
- O’Grady, C.J.; Fox, J.L.; Dalbo, V.J.; Scanlan, A.T. A Systematic Review of the External and Internal Workloads Experienced During Games-Based Drills in Basketball Players. Int. J. Sports Physiol. Perform. 2020, 15, 603–616. [Google Scholar] [CrossRef]
- Fox, J.L.; Stanton, R.; Sargent, C.; Wintour, S.-A.; Scanlan, A.T. The Association Between Training Load and Performance in Team Sports: A Systematic Review. Sports Med. 2018, 48, 2743–2774. [Google Scholar] [CrossRef]
- Fox, J.L.; Scanlan, A.; Sargent, C.; Stanton, R. A Survey of Player Monitoring Approaches and Microsensor Use in Basketball. J. Hum. Sport Exerc. 2019, 15, 11. [Google Scholar] [CrossRef]
- Ponce-Bordón, J.C.; Ramírez-Bravo, I.; López-Gajardo, M.Á.; Díaz-García, J. Monitorización de La Carga de Entrenamiento Por Posición y Tareas En Baloncesto Profesional Masculino. E-Balonmano Com Rev. Cienc. Deporte 2021, 17, 145–152. [Google Scholar] [CrossRef]
- Mateus, N.; Abade, E.; Coutinho, D.; Gómez, M.-Á.; Peñas, C.L.; Sampaio, J. Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management. Sensors 2025, 25, 139. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Sarlis, V.; Tjortjis, C. Evaluating the Effectiveness of Machine Learning Models for Performance Forecasting in Basketball: A Comparative Study. Knowl. Inf. Syst. 2024, 66, 4333–4375. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gómez-Carmona, C.D.; Gutiérrez-Vargas, R.; Pino-Ortega, J. From Big Data Mining to Technical Sport Reports: The Case of Inertial Measurement Units. BMJ Open Sport Exerc. Med. 2019, 5, e000565. [Google Scholar] [CrossRef] [PubMed]
- Rein, R.; Memmert, D. Big Data and Tactical Analysis in Elite Soccer: Future Challenges and Opportunities for Sports Science. SpringerPlus 2016, 5, 1410. [Google Scholar] [CrossRef]
- Zhao, K.; Du, C.; Tan, G. Enhancing Basketball Game Outcome Prediction Through Fused Graph Convolutional Networks and Random Forest Algorithm. Entropy 2023, 25, 765. [Google Scholar] [CrossRef]
- Ke, Y.; Bian, R.; Chandra, R. A Unified Machine Learning Framework for Basketball Team Roster Construction: NBA and WNBA. Appl. Soft Comput. 2024, 153, 111298. [Google Scholar] [CrossRef]
| Abbreviation | Unit | Variable |
|---|---|---|
| Expl Dist | m | Distance covered at explosive intensity |
| Vel Abs (0–6) (m/min) | m/min | Relative distance covered from 0 to 6 m/min |
| Vel Abs (18–21) (m/min) | m/min | Relative distance covered from 18 to 21 |
| Vel Abs (21–24) (m/min) | m/min | Relative distance covered from 21 to 24 km/h |
| Vel Max | km/h | Maximum velocity achieved by a player |
| Acc/min | n/min | Number of accelerations per minute |
| Dist. Acc | m | Total distance covered accelerating |
| MAX Acc (m/s2) | m/s2 | Maximum acceleration |
| Acc Abs (0–1)/min | n/min | Absolute accelerations lower than 1 m/s2 per minute |
| Acc Abs (1–2)/min | n/min | Absolute accelerations from 1 to 2 m/s2 per minute |
| Acc Abs (3–4)/min | n/min | Absolute accelerations from 3 to 4 m/s2 per minute |
| Acc Abs (4–5)/min | n/min | Absolute accelerations from 4 to 5 m/s2 per minute |
| Acc Abs (5–6)/min | n/min | Absolute accelerations from 5 to 6 m/s2 per minute |
| Acc Abs (6–10)/min | n/min | Absolute accelerations from 6 to 10 m/s2 per minute |
| Dec Abs (−1, 0)/min | n/min | Absolute decelerations lower than 1 m/s2 per minute |
| Dec Abs (−2, −1)/min | n/min | Absolute decelerations from 1 to 2 m/s2 per minute |
| Dec Abs (−3, −2)/min | n/min | Absolute decelerations from 2 to 3 m/s2 per minute |
| Dec Abs (−4, −3)/min | n/min | Absolute decelerations from 3 to 4 m/s2 per minute |
| Dec Abs (−5, −4)/min | n/min | Absolute decelerations from 4 to 5 m/s2 per minute |
| Impacts (0–3) G | n | Total impacts at intensity lower than 3 G (G = 9.8 m/s2) |
| Impacts (3–5) G | n | Total impacts from 3 to 5 G (G = 9.8 m/s2) |
| Impacts (8–100) G | n | Total impacts from 8 to 10 G (G = 9.8 m/s2) |
| Impacts (3–5)/min | n/min | Total impacts per minute from 3 to 5 G (G = 9.8 m/s2) |
| Landing (3–5)/min | n/min | Total landings per minute from 3 to 5 G (G = 9.8 m/s2) |
| Landing (5–8)/min | n/min | Total landings per minute from 5 to 8 G (G = 9.8 m/s2) |
| Landing (8–100)/min | n/min | Total landings per minute from 8 to 10 G (G = 9.8 m/s2) |
| Takeoff (3–5)/min | n/min | Total takeoffs per minute from 3 to 5 G (G = 9.8 m/s2) |
| Takeoff (5–8)/min | n/min | Total takeoffs per minute from 5 to 8 G (G = 9.8 m/s2) |
| Centr. F + MAX | N | Maximum centripetal force (left size) |
| Centr. F + AVG | N | Mean centripetal force (left size) |
| Centr. F − AVG | N | Mean centripetal force (right size) |
| Centr. − MIN | N | Maximum centripetal force (right size) |
| Total Game | First Quarter (Q1) | Second Quarter (Q2) | Third Quarter (Q3) | Fourth Quarter (Q4) | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Eigenvalue | 13.50 | 10.99 | 8.58 | 6.04 | 12.14 | 7.54 | 6.50 | 6.11 | 5.75 | 5.02 | 4.74 | 14.59 | 11.86 | 8.97 | 6.80 | 6.56 | 6.25 | 11.17 | 9.09 | 6.84 | 5.98 | 4.91 | 15.11 | 10.41 | 7.16 | 5.80 | 5.29 | |||||
| % Variance | 21.99 | 35.50 | 46.49 | 55.07 | 61.10 | 21.38 | 33.52 | 41.06 | 47.56 | 53.67 | 59.43 | 64.45 | 69.19 | 18.51 | 33.10 | 44.96 | 53.92 | 60.72 | 67.27 | 73.53 | 31.25 | 42.42 | 51.51 | 58.34 | 64.32 | 69.22 | 24.21 | 39.32 | 49.73 | 56.89 | 62.69 | 67.98 |
| PC | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
| Expl dist | 0.898 | 0.645 | 0.722 | 0.834 | ||||||||||||||||||||||||||||
| Vel Abs (0–6) (m/min) | 0.892 | 0.767 | ||||||||||||||||||||||||||||||
| Vel Abs (18–21) (m/min) | 0.700 | 0.811 | 0.803 | 0.809 | ||||||||||||||||||||||||||||
| Vel Max | 0.709 | |||||||||||||||||||||||||||||||
| Acc/min | 0.895 | 0.849 | 0.922 | 0.892 | 0.847 | |||||||||||||||||||||||||||
| Dist Acc | 0.719 | 0.731 | 0.725 | |||||||||||||||||||||||||||||
| MAX Acc (m/s2) | 0.721 | |||||||||||||||||||||||||||||||
| Acc Abs (0–1)/min | 0.953 | 0.946 | ||||||||||||||||||||||||||||||
| Acc Abs (1–2)/min | 0.757 | 0.821 | ||||||||||||||||||||||||||||||
| Acc Abs (3–4)/min | 0.838 | 0.755 | ||||||||||||||||||||||||||||||
| Acc Abs (4–5)/min | 0.794 | 0.841 | 0.894 | 0.820 | 0.742 | |||||||||||||||||||||||||||
| Acc Abs (5–6)/min | 0.863 | 0.710 | ||||||||||||||||||||||||||||||
| Acc Abs (6–10)/min | 0.890 | |||||||||||||||||||||||||||||||
| Dec Abs (−1. 0)/min | 0.960 | 0.957 | ||||||||||||||||||||||||||||||
| Dec Abs (−2, −1)/min | 0.857 | |||||||||||||||||||||||||||||||
| Dec Abs (−3, −2)/min | 0.775 | |||||||||||||||||||||||||||||||
| Dec Abs (−4, −3)/min | 0.741 | |||||||||||||||||||||||||||||||
| Dec Abs (−5, −4)/min | 0.862 | |||||||||||||||||||||||||||||||
| Impacts (0–3) G | 0.748 | |||||||||||||||||||||||||||||||
| Impacts (3–5) G | 0.767 | |||||||||||||||||||||||||||||||
| Impacts (8–100) G | 0.746 | |||||||||||||||||||||||||||||||
| Impacts (3–5)/min | 0.775 | |||||||||||||||||||||||||||||||
| Landing (3–5)/min | 0.701 | 0.778 | 0.772 | 0.804 | 0.798 | |||||||||||||||||||||||||||
| Landing (5–8)/min | 0.775 | 0.755 | 0.702 | 0.732 | ||||||||||||||||||||||||||||
| Landing (8–100)/min | 0.842 | 0.564 | ||||||||||||||||||||||||||||||
| Takeoff (3–5)/min | 0.783 | 0.835 | 0.842 | |||||||||||||||||||||||||||||
| Takeoff (5–8)/min | 0.717 | 0.817 | 0.735 | |||||||||||||||||||||||||||||
| Centr. F + MAX | 0.701 | 0.803 | 0.764 | 0.633 | ||||||||||||||||||||||||||||
| Centr. F + AVG | 0.857 | |||||||||||||||||||||||||||||||
| Centr. F − AVG | 0.850 | |||||||||||||||||||||||||||||||
| Centr. − MIN | 0.703 | 0.785 | 0.891 | 0.701 | 0.705 | |||||||||||||||||||||||||||
| Central Players | Forward Players | Guard Players | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Eigenvalue | 12.78 | 10.65 | 7.06 | 12.86 | 9.45 | 6.78 | 5.67 | 10.89 | 9.25 | 7.214 | 6.80 | 5.39 | 5.00 | |||
| % Variance | 34.12 | 46.89 | 57.55 | 64.61 | 30.360 | 43.22 | 52.67 | 59.46 | 65.12 | 24.75 | 35.64 | 44.89 | 52.10 | 58.90 | 64.25 | 69.25 |
| PC | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Explosive distance | 0.810 | |||||||||||||||
| Vel Abs (18–21) (m/min) | 0.772 | 0.760 | 0.760 | |||||||||||||
| Vel Abs (21–24) (m/min) | 0.744 | |||||||||||||||
| Acc/min | 0.867 | 0.831 | ||||||||||||||
| Dist Acc | 0.887 | 0.736 | ||||||||||||||
| Vel Max | 0.788 | 0.710 | ||||||||||||||
| Acc Abs (3–4)/min | 0.892 | 0.733 | 0.864 | |||||||||||||
| Acc Abs (4–5)/min | 0.869 | 0.883 | ||||||||||||||
| Dec Abs (−2, −1)/min | 0.894 | 0.739 | 0.780 | |||||||||||||
| Dec Abs (−5, −4)/min | 0.792 | |||||||||||||||
| Impacts (0–3) G | 0.761 | |||||||||||||||
| Landing (3–5)/min | 0.741 | 0.738 | ||||||||||||||
| Landing (5–8)/min | 0.831 | 0.701 | ||||||||||||||
| Landing (8–100)/min | 0.839 | |||||||||||||||
| Takeoff (5–8)/min | 0.791 | 0.831 | ||||||||||||||
| Centr. F + MAX | 0.747 | 0.781 | ||||||||||||||
| Centr. F − MIN | 0.762 | 0.774 | ||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, S.J.; Rico-González, M.; Gómez-Carmona, C.D.; Pino-Ortega, J. Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position. Sensors 2025, 25, 6253. https://doi.org/10.3390/s25196253
Ibáñez SJ, Rico-González M, Gómez-Carmona CD, Pino-Ortega J. Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position. Sensors. 2025; 25(19):6253. https://doi.org/10.3390/s25196253
Chicago/Turabian StyleIbáñez, Sergio J., Markel Rico-González, Carlos D. Gómez-Carmona, and José Pino-Ortega. 2025. "Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position" Sensors 25, no. 19: 6253. https://doi.org/10.3390/s25196253
APA StyleIbáñez, S. J., Rico-González, M., Gómez-Carmona, C. D., & Pino-Ortega, J. (2025). Physical Workload Patterns in U-18 Basketball Using LPS and MEMS Data: A Principal Component Analysis by Quarter and Playing Position. Sensors, 25(19), 6253. https://doi.org/10.3390/s25196253
