Heat Stroke Warning System Prototype for Athletes: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Stroke Warning System Design
2.2. Heat Stroke Risk Calculations
2.3. Notification Flowchart
2.4. Sitemap
2.5. Testing Procedures
2.5.1. Temperature and Humidity Sensor Calibration
2.5.2. Infrared Temperature Sensor Calibration
2.5.3. Heart Rate Sensor Calibration
3. Results
3.1. Sensors Calibration
3.1.1. The DHT22 Temperature Measurements by Comparing with a Standard Thermometer
3.1.2. The DHT22 Humidity Measurements by Comparing with a Standard Hygrometer
3.1.3. The GY-906-BAA MLX90614 Infrared Temperature Sensor Measurements by Comparing with a Standard Digital Thermometer
3.1.4. The MAX30102 Heart Rate Sensor Measurements by Comparing with a Standard Pulse Oximeter
3.2. Graphical User Interface
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yankelson, L.; Sadeh, B.; Gershovitz, L.; Werthein, J.; Heller, K.; Halpern, P.; Halkin, A.; Adler, A.; Steinvil, A.; Viskin, S. Life-Threatening Events During Endurance Sports. J. Am. Coll. Cardiol. 2014, 64, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, A.; Cecannecchia, C.; Baldari, B.; De Simone, S.; Cipolloni, L. Fatal Heat Stroke: A Case Report and Literature Review. Forensic Sci. 2024, 4, 417–431. [Google Scholar] [CrossRef]
- Walter, E.J.; Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care 2016, 20, 199. [Google Scholar] [CrossRef] [PubMed]
- Antonio, P.O.; Rocio, C.M.; Vicente, R.; Carolina, B.; Boris, B. Heat stroke detection system based in IoT. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, S.-T.; Lin, S.-S.; Lan, C.-W.; Hsu, H.-Y. Design and Development of a Wearable Device for Heat Stroke Detection. Sensors 2017, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Son, T.W.; Ramli, D.A.; Aziz, A.A. Wearable Heat Stroke Detection System in IoT-based Environment. Procedia Comput. Sci. 2021, 192, 3686–3695. [Google Scholar] [CrossRef]
- Adafruit Industries, DHT22 Temperature-Humidity Sensor + Extras, Adafruit.com. 2019. Available online: https://www.adafruit.com/product/385 (accessed on 20 November 2023).
- Digital Plug & Play Infrared Thermometer in a TO-Can, Melexis. 2019. Available online: https://www.melexis.com/en/product/mlx90614/digital-plug-play-infrared-thermometer-to-can (accessed on 20 November 2023).
- Espressif, ESP32 Series Datasheet Including. 2024. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 20 November 2023).
- MAX30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health Analog Devices, Analog.com. 2018. Available online: https://www.analog.com/en/products/max30102.html (accessed on 20 November 2023).
- Django, Django, Django Project. Available online: https://docs.djangoproject.com/en/4.2/ (accessed on 20 November 2023).
- Gundry, T. Adafruit/DHT-Sensor-Library, GitHub. Available online: https://github.com/adafruit/DHT-sensor-library (accessed on 4 May 2020).
- Giuffre, M.; Heidenreich, T.; Carney-Gersten, P.; Dorsch, J.A.; Heidenreich, E. The relationship between axillary and core body temperature measurements. Appl. Nurs. Res. 1990, 3, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Niedermann, R.; Wyss, E.; Annaheim, S.; Psikuta, A.; Davey, S.; Rossi, R.M. Prediction of human core body temperature using non-invasive measurement methods. Int. J. Biometeorol. 2013, 58, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hercog, D.; Lerher, T.; Truntič, M.; Težak, O. Design and Implementation of ESP32-Based IoT Devices. Sensors 2023, 23, 6739. [Google Scholar] [CrossRef] [PubMed]
- Krizea, M.; Gialelis, J.; Kladas, A.; Theodorou, G.; Protopsaltis, G.; Koubias, S. Accurate Detection of Heart Rate and Blood Oxygen Saturation in Reflective Photoplethysmography, IEEE Xplore. In Proceedings of the 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 9–11 December 2020; Available online: https://ieeexplore.ieee.org/abstract/document/9408845 (accessed on 31 October 2024).
- Amirrudin, N.A.; Nazreen, M.; Syafiq, M.A.; Irwan, M.H.; Bolang, F.A.; Putra, A.T.A.; Ariffin, A.; Yusof, K.H.; Sapari, N.M. Heart rate sensor with IoT features. In E3S Web of Conferences; EDP Sciences: London, UK, 2024; Volume 516, p. 05002. [Google Scholar] [CrossRef]
- Balli, S.; Sharan, S.; Shumway, K.R. Physiology, Fever, PubMed. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562334/ (accessed on 4 September 2023).
- Awasthi, A.; Vishwakarma, K.; Pattnayak, K.C. Retrospection of heatwave and heat index. Theor. Appl. Climatol. 2021, 147, 589–604. [Google Scholar] [CrossRef]
- Milella, F.; Seveso, A.; Famiglini, L.; Banfi, G.; Cabitza, F. Detecting the Effect Size of Weather Conditions on Patient-Reported Outcome Measures (PROMs). J. Pers. Med. 2022, 12, 1811. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention, Heat Related Illness, NIOSH, CDC. Available online: https://www.cdc.gov/niosh/heat-stress/about/illnesses.html?CDC_AAref_Val=https://www.cdc.gov/niosh/topics/heatstress/heatrelillness.html (accessed on 10 September 2024).
- Portney, L.G. Foundations of Clinical Research Applications to Evidence-Based Practice; Mcgraw-Hill Education LLC.: New York, NY, USA, 2020. [Google Scholar]
- Swanson, D.A. On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE. Rev. Econ. Financ. 2015, 5, 1–14. Available online: https://ideas.repec.org/a/bap/journl/150301.html (accessed on 31 October 2024).
- Smiths Medical International Ltd. SPECTRO2TM 30 Digital Pulse Oximeter. Available online: https://image.tigermedical.com/Brochures/SMIWW1030EN--20180519051703985.pdf (accessed on 31 October 2024).
- Longmore, S.K.; Jalaludin, B.; Breen, P.P.; Gargiulo, G. Comparison of Bi-Wavelength and Tri-Wavelength Photoplethysmography Sensors Placed on the Forehead. In Proceedings of the 2019 International Conference on Electrical Engineering Research & Practice (ICEERP), Sydney, NSW, Australia, 24–28 November 2019. [Google Scholar] [CrossRef]
- Belhadj, O.; Rouchon, V. How to Check/Calibrate Your Hygrometer? J. Pap. Conserv. 2015, 16, 40–41. [Google Scholar] [CrossRef]
- Gammel, J. High-Precision Temperature Sensing for Core Temperature Monitoring in Wearable Electronics, Electrical Engineering News and Products. Available online: https://www.eeworldonline.com/high-precision-temperature-sensing-for-core-temperature-monitoring-in-wearable-electronics/ (accessed on 23 November 2016).
- Stracina, T.; Ronzhina, M.; Redina, R.; Novakova, M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front. Physiol. 2022, 13, 867033. [Google Scholar] [CrossRef]
- Mimish, L. Electrocardiographic findings in heat stroke and exhaustion: A study on Makkah pilgrims. J. Saudi Heart Assoc. 2012, 24, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Otani, H.; Kaya, M.; Tamaki, A.; Watson, P.; Maughan, R.J. Effects of solar radiation on endurance exercise capacity in a hot environment. Eur. J. Appl. Physiol. 2016, 116, 769–779. [Google Scholar] [CrossRef] [PubMed]
Input | Status | Data | Heat Stroke Risk |
---|---|---|---|
Heart Rate (BPM) | Normal | 60–99 | 0 |
Moderate | 100–188 | 1 | |
High | ≥189 | 2 | |
Body Temperature (°C) | Normal | ≤37.2 | 0 |
Moderate | 37.3–38.0 | 1 | |
High | 38.1–39.0 | 2 | |
Very High | ≥39.1 | 3 |
Temperature (°C) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Humidity (%) | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | |
40 | 27 | 28 | 29 | 30 | 31 | 32 | 34 | 35 | 37 | 39 | 41 | 43 | 46 | 48 | 51 | 54 | 57 | |
45 | 27 | 28 | 29 | 30 | 32 | 33 | 35 | 37 | 39 | 41 | 43 | 46 | 49 | 51 | 54 | 57 | 61 | |
50 | 27 | 28 | 30 | 31 | 33 | 34 | 36 | 38 | 41 | 43 | 46 | 49 | 52 | 55 | 58 | 62 | 65 | |
55 | 28 | 29 | 30 | 32 | 34 | 36 | 38 | 40 | 43 | 46 | 48 | 52 | 55 | 59 | 62 | 66 | 70 | |
60 | 28 | 29 | 31 | 33 | 35 | 37 | 40 | 42 | 45 | 48 | 51 | 55 | 59 | 63 | 67 | 71 | 76 | |
65 | 28 | 30 | 32 | 34 | 36 | 39 | 41 | 44 | 48 | 51 | 55 | 59 | 63 | 67 | 72 | 77 | 82 | |
70 | 29 | 31 | 33 | 35 | 38 | 40 | 43 | 47 | 50 | 54 | 58 | 63 | 67 | 72 | 77 | 82 | 88 | |
75 | 29 | 31 | 34 | 36 | 39 | 42 | 46 | 49 | 53 | 58 | 62 | 67 | 72 | 77 | 83 | 88 | 94 | |
80 | 30 | 32 | 35 | 38 | 41 | 44 | 48 | 52 | 57 | 61 | 66 | 71 | 77 | 83 | 89 | 95 | 101 | |
85 | 30 | 33 | 36 | 39 | 43 | 47 | 51 | 55 | 60 | 65 | 70 | 76 | 82 | 88 | 95 | 102 | 109 | |
90 | 31 | 34 | 37 | 41 | 45 | 49 | 54 | 58 | 64 | 69 | 75 | 81 | 88 | 95 | 102 | 109 | 117 | |
95 | 31 | 35 | 38 | 42 | 47 | 51 | 57 | 62 | 68 | 74 | 80 | 87 | 94 | 101 | 109 | 117 | 125 | |
100 | 32 | 36 | 40 | 44 | 49 | 54 | 60 | 66 | 72 | 78 | 85 | 92 | 100 | 108 | 116 | 125 | 134 |
Heat Index (°C) | Status Color | Status | Heat Stroke Risk |
---|---|---|---|
27–32 | Normal | 0–2 | |
33–41 | Moderate | 3–5 | |
42–54 | High | 5–6 | |
≥55 | Very High | 7–8 |
Output | Status | Heat Stroke Risk |
---|---|---|
Heat Stroke Risk Status | Normal | 0 |
Moderate | 1 | |
High | 2 | |
Very High | 3 |
Parameters | Developed Device Measurement | Standard Device Measurement | |
---|---|---|---|
Ambient Temperature (°C) | Mean (SD) | 32.16 (1.49) | 31.97 (1.23) |
r | 0.923 * | ||
%Error | 0.59 | ||
R2 | 90.70 | ||
Relative Humidity (%) | Mean (SD) | 50.59 (1.11) | 50.58 (1.18) |
r | 0.774 * | ||
%Error | 0.02 | ||
R2 | 63.90 | ||
Body Temperature (°C) | Mean (SD) | 36.60 (0.23) | 36.53 (0.15) |
r | 0.923 * | ||
%Error | 0.19 | ||
R2 | 85.10 | ||
Heart rate (BPM) | Mean (SD) | 89.83 (6.07) | 87.58 (3.45) |
r | 0.179 | ||
%Error | 2.57 | ||
R2 | 3.20 |
Parameters | Developed Device Measurement | ||
---|---|---|---|
1st Time | 2nd Time | ||
Ambient Temperature (°C) | Mean (SD) | 29.84 (0.20) | 30.15 (0.28) |
r | 0.489 | ||
%Error | 1.04 | ||
R2 | 1.40 | ||
Relative Humidity (%) | Mean (SD) | 55.41 (1.21) | 61.79 (1.98) |
r | 0.185 | ||
%Error | 11.51 | ||
R2 | 8.30 | ||
Body Temperature (°C) | Mean (SD) | 37.34 (0.12) | 37.13 (0.21) |
r | 0.866 * | ||
%Error | 0.56 | ||
R2 | 75.00 | ||
Heart rate (BPM) | Mean (SD) | 83.25 (7.93) | 88.50 (8.43) |
r | 0.171 | ||
%Error | 17.80 | ||
R2 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silawarawet, K.; Kaewchukul, P.; Saadprai, S. Heat Stroke Warning System Prototype for Athletes: A Pilot Study. Sensors 2025, 25, 294. https://doi.org/10.3390/s25020294
Silawarawet K, Kaewchukul P, Saadprai S. Heat Stroke Warning System Prototype for Athletes: A Pilot Study. Sensors. 2025; 25(2):294. https://doi.org/10.3390/s25020294
Chicago/Turabian StyleSilawarawet, Kanchana, Phattarakorn Kaewchukul, and Sairag Saadprai. 2025. "Heat Stroke Warning System Prototype for Athletes: A Pilot Study" Sensors 25, no. 2: 294. https://doi.org/10.3390/s25020294
APA StyleSilawarawet, K., Kaewchukul, P., & Saadprai, S. (2025). Heat Stroke Warning System Prototype for Athletes: A Pilot Study. Sensors, 25(2), 294. https://doi.org/10.3390/s25020294